The time evolution of a flat universe with a
non-vanishing cosmological constant



Chapter 1

Late times: a flat ACDM
universe, neglecting radiation

1.1 Governing differential equation

For k = 0 (flat universe), the first Friedmann-Lemaitre equation can be written
as:

81G
szT(P+>\), (1.1)

where H is the Hubble parameter, G is the gravitational constant, p the den-

sity of matter and radiation (including Dark Matter), and A the cosmological

constant. Taking the time derivative and paying attention to A being constant
yields:

oG

3 H

The density and pressure of the radiation is negligible (except in the early

stages of the universe!); therefore p = 0, and the second Friedmann-Lemaitre

(1.2)

equation gives:
p=—3Hp.

Plugging this into (1.2) yields:
H = —4nGp

Using for p now again the first Friedmann-Lemaitre equation, one obtains the

differential equation
2 H = H? — 8nG A
3 3
We'll see below that for ¢ — oo, we have H = Hj;,, = const. and hence H=0.

This yields:
81G
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and hence the differential equation become simply

Hppy = — A,

2.
—§H = 0? - HE,,.



We now define the critical density
~_3H 2
Perit = -

and the density parameter for the cosmological constant:
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That enables us to write:
Hi, = O H? = Q0 Hj,

where the subscript ”0” indicates that these are the values at the time tg, i.e.
our current, time. This relation holds because Hy;,, = const.

1.2 Time dependence of the Hubble parameter

One can rewrite the differential equation for the Hubble parameter as
dH/Hy;p, dt
U= (H/Hym)? ~ ten
with the characteristic time scale

2
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Integrating then leads to:

H \1t t—t
{arcoth < ) } = 0
Hlim to teh

(The integration gives also a second possible solution, with the area tangens
hyperbolicus instead of the area cotangens hyperbolicus; essentially one has to
use the boundary conditions to choose the right solution.)

At the Big Bang (¢t = 0), by definition H — oo had to hold. This gives
the first important result, the time ¢; since the Big Bang (using the connection
between Hj;py, and €2y o):

Him
to = t.partanh ( Ello ) = t.partanh (, /QA,()) (1.3)

(note that taking the radiation into account would not change this result signif-
icantly, since the radiation dominated epoch lasted only a comparatively short
time), and the formula for the Hubble parameter becomes then simply:

H(t) = Hy;yy, coth (i) :
ten

Here we see what was already said at the end of the last section: Hy;, is the
limit of H for ¢t — oo.



1.3 Time dependence of the scale parameter

For the scale parameter (resp. the curvature radius), we have the following
differential equation:

m=2
a

Using the result for H(t) obtained above, this implies

a(t) ~ (sinh <é>>2/3 .

Using the normalization a(ty) = 1, we get:

() — (QMl%;;)QB’
sinh ti—oh

and by inserting the formula (1.3) for ¢y, this simplifies to:

() — (Tﬁ) v (son (1)) )
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Taking into account that %A = £ ~a™’, one sees that

1/3
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where a.q is the scale factor at the time when the matter and dark energy
densities were equal, and hence

a(t) = aeq (Sinh (é))wg .

This also yields the result
teq = teparsinh(1).

Taking the second time derivative of the scale factor and setting it equal to
zero, we obtain that the transition from decelerated to accelerated expansion
(the ”cosmic jerk”) happened at the time

1
tierk = t.partanh (\/%) ,

hence:
tierk artanh <\/g>
to artanh (/) o)
and

teg  arsinh(1)

tierk a artanh (\/g)

~ 1.34




1.4 Red shift

The red shift z obeys the following formula:

|4 2(t) = ato) _ 1

a(t) ()

Plugging in (1.4) yields:
1

Qeq (Sinh (ﬁ) ) 2

Inserting the result for the time of the ” cosmic jerk” from above, one arrives at
this result for the redshift at which the jerk happened:

1+ 2(t) =

21/3
1+ Zjerk =
Qeq
This also implies
L Zjerk _ 9175 1 196
1+ zeq

A further important result is the relationship between H and z:

H(z) = Hoy/(1 - Qa0)(1 +2) + Qg

Finally, we also arrive at the following general relationship between the red
shift of an object and the time when the light we see from it was emitted:

) 1
t = t.parsinh .
(aeq . (1 + Z))3

Note that this formula is only valid for not too large redshifts; e.g. the time
of the decoupling (z ~ 1089) comes out wrong here, since at that time, the
radiation was not negligible.

Light travels on null geodesics; therefore the distance traveled by light be-
tween the times t; and ¢ is

7ot
D = c/ —.
a(t)
t1
Inserting the a(t) from (1.4) and using the substitution x = ¢/t.;, leads then to

T2

. 2C _1/3 . _2/3
D= 3o (. [ o(1 — Q,\70)) /smh(z) dx.

r1

If one wants to know which distance light traveled which was emitted at redshift
z to us, one has to use

xr1 = arsinh ( L )
(Geq - (1 +2))°

To = artanh (M)

The remaining integral can then be done e.g. using Mathematica.




1.5 The density parameters

Finally, for the time evolution of the density parameters for the cosmological
constant and for the matter we obtain:

H? Y
Q/\ = Q)\’Om = tanh (E) .

Q,=1-Q)= cosh™2 (i) .
ten

Especially, this yields
1
Q/\,jerk = g

If one wants to have an equation of state for the whole universe, one has to
write

p(t) = w(t)p(?)-

The total density is the density of matter plus the density of the dark energy;
the total pressure is (to a good approximation) identical with the pressure of
the dark energy, which is equal to minus its density. Hence we have:

—paA(t) = w(t)(par(t) + pa(t))

. Q5 (1)
Qmnatter (t) + Q/\(t)

But the denominator gives simply 1, hence:

w(t) = — tanh? (i> .

ch

w(t) = —



Chapter 2

Early times: a flat CDM
universe with radiation,
neglecting A

2.1 Governing differential equation

Now we have for the total density the sum of the matter and the radiation
density:

P =pPM + PR,
and for the radiation,
1
Pr = ngCQ

holds. Using the second Friedmann-Lemaitre equation then gives:

pv = —3Hpuy
pr = —4Hpg.
Using
- (2.1)
== .
and the normalisation
a(to) = 1,

the solutions for the differential equations for the densities are

-3
PM = PM,0Q

—4
PR = PROC

where ppr,o and pg o are the values of the densities at time ¢g. Since p = perif) =
%Q, it follows that

H*Qy = HiQuoa
HQQR = I‘IgQR’Oai4



Now we can write (using flatness and neglecting the contribution from the
cosmological constant):

H? = HQ(QM + Qp) = Hg(QM,oa_‘Q’ + QRyoa_‘l)./

and using (2.1), this yields the following differential equation for the scale pa-

rameter:
Qrpo
aa = Hoy/Qp00 + Qpo = Hpy /<2 a+ : 2.2
0y/ 0 R,0 0y/ 20 Dt (2.2)

Then introduce the abbreviation

_prr _ QR
pv - Qur
(usually, 7 is used for the ratio of the numbers of photons and baryons - don’t

confuse that with the definition used here!). Inserting this relation in (2.2)
above, we now get the differential equation

aa = H(]\/QM’O\/(Z + Mo

2.2 Time dependence of the scale parameter

Solving the differential equation above (with the additional condition that a = 0
for t = 0) yields (see Bronstein, integral 125)

2

4
3(a —2mo)vVa+mo + 5770\/% = /QuroHot.

Solving this equation for the time yields:

2

_ _ 3/2
= S (@ — 2n0)v/a 7m0+ 2n*] (2.3)

Defining the characteristic time scale

3/2
2770/

bop = ——0____
& 3Ho+\/Cry0

enables us to express this in terms of the ratio of the scale parameter and the

density ratio parameter:
t
- (1—2> B )
teh Us Us

Solving the equation above for the scale parameter is a lot more compli-

cated... First, we write
a

b=— -1

Mo

and ;
T=——2

tch



This yields the much simpler equation
b—1)vb+2=r. (2.4)

Note that due to @ > 0 and ¢ > 0, the new variables have to satisfy the
constraints b > —1 and 7 > —2.

Squaring the equation (2.4), we arrive at the reduced cubic equation
¥ -3b+2-12=0 (2.5)

with the determinant

1
D= Z(T—l— 2)7m2 (1 —2).

We now first study the three special cases with D = 0 (for which (2.5) has one
single and one double real solution):

1. 7 = —2 yields the solutions b = —1 and b = 2 for (2.5), but only the first
one also solves 2.4

2. 7 = 0 yields the solutions b = —2 and b = 1 for (2.5), but due to the
constraint mentioned above, only the second one can be used

3. 7 = 2 yields the solutions b = —1 and b = 2 for (2.5), but only the second
one also solves 2.4

In order to solve the equation in the intervals where D # 0, we have to use
the formulas by Cardano. First, for 7 > 2, we have D > 0 and hence only one
single real solution for (2.5). Then

1 1
u= -4 VD=t -14 Lev—a

is real, and we have

__p 1
v 3u

also real. Hence the real solution is the first one of Cardano’s three solutions:

1 1 1 1
b(T):u—I——:{’/—7’2—1—}——7'\/7'2—44- .
u 2 2 6/%7'2—1—1-%7'\/7'2—4

for = > 2.

For -2 < 7 < 0and 0 < 7 < 2, we have D < 0 and hence three real
solutions for (2.5).

) .
U= ,3/fg+\/5: 5/57'21+%|T|\/4T2

is now complex, and for v we have

*

P 1 U
== —= —— = U
3u  u  |ul?

*
’
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because

1 o =)
|U|2 = §/§T2—1+%|7—| 4_7—2 :\3/572_1+%|T| 4_7-2
3 2 1
= (57 —1) +(glVa=72) ={/3rt -2+ 14 24 =12
= 1

Hence Cardano’s three solutions are:

bl = 2Reuw
b2’3 = —Reux \/§ Im w.
In order to find out which solution we have to use, we now examine u more
closely. The argument of the cubic root is a complex number with magnitude 1
(see above) whose imaginary part is always positive. Hence the argument of the
cubic root lies on the upper half unit circle. This implies that u is a complex
number with magnitude 1 and a phase between 0 and 7 /3. It follows that:
1< b <2
1< by <1
—-2< by < -1

Comparing this with the solutions for 7 = +2 and 7 = 0 above, we see that we
have to use

e b(1) =by = —Reu+ 3 Imu for -2 < 7 <0, and
o b(1)=by=2Reufor0<71<2.

It remains to express the real and imaginary parts with elementary func-
tions. For that, we note that one can express the real and imaginary parts of
any complex number z of magnitude 1 by

Rez = cosg
Imz = singy,

where ¢ is the phase of z. It then follows that

Re &/z = cos <£>

3
Im /z = sin (g) )
Employing these relations, the solution for 7 < 2 is then given by:
b(t) = —cos (% arccos(72 — 2)) +V/3sin (% arccos(12 — 2)) for —2<7<0
b(t) = 2cos <é arccos (12 — 2)) for 0 <71 <2.
Using

a(t) = no [b(ten (T +2)) + 1]

yields then finally the respective solutions for a(t).



2.3 Value of the density ratio parameter today

In order to get meaningful results, we now have the know the value of 7.

For the density of radiation, one only has to consider the part of the radiation
which was already present in the early universe (until about the time of the
decoupling, which was considerably later than the radiation-dominated epoch),
since all radiation produced later had essentially no influence on the evolution
of the universe. But that part is essentially the CMBR and thermal neutrinos
(other forms of radiation were only important at an even earlier epoch of the
universe), i. e. blackbody radiation. The energy density of blackbody radiation
is given by \

gm 4

pblackbody - 30h305 (kT) ’
where ¢ is the number of degrees of freedom. Additionally, one has to take
into account that while 7" is here the temperature of the CMBR, Toapr, the

neutrinos have a lower temperature (?)

TI/ < 4 )1/3
Temsr  \11
and give only an ”effective massless number” of degrees of freedom” (?): every
neutrino degree of freedom contributes only with a factor of 7/8 to the total
number of degrees of freedom. The number of degrees of freedom for all three

neutrinos and anti-neutrinos is then given by 7/8-3-2 = 21/4. Hence the total
radiation density is given by

72(2 +21/4 - (4/11)4/3)
30R3cP

PRO = (kTeasr)*

(see http://pdg.Ibl.gov/1998 /bigbangrpp.pdf), and hence we get,

pro _ 8TG(2+21/4- (4/1)*)(KTeapr)* 75371077 Ty pp
Perit,0 90R>cS HE h3 K4

Qro =

with Hg = hg- 100 km/s/Mpc =~ hqg - 3.24 - 10718 1/s or
7537107 T
o 200 K°

2.4 Results

Inserting the accepted value Toyrpr = 2.72528 K, this gives

4.1576 - 107°

No ~ ;
h%QMp

Using standard values from the WMAP satellite (h2Q0 = 0.135) yields then

1o = 0.000308.
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Inserting this into the equation (2.3) above yields together with zz.. = 1089
for the time of the decoupling:

tgee = 379000 years,

in agreement with the result mentioned in the first year WMAP paper.
As a side note, using the dependence of the densities on the scale parameter,
we have for the general ratio of the energy densities:

Mo
n=-—
a

For n = 1, we hence have the general result

Qeq = 10,

where a., was the scale parameter at the time when the energy densities of
matter and radiation are equal. Hence we obtain for the redshift at which the
shift from radiation- to matter-domination happened:

1 1
Zeg = —— = 1= — — 124052 h3Qm.0 = 3250.
eq To

This agrees with the formula (15.13) in

http://pdg.1bl.gov /1998 /bigbangrpp.pdf.
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