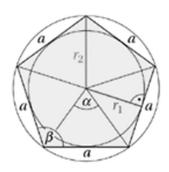
Regelmäßige Vielecke:



Anzahl der Ecken
 Umkreisradius

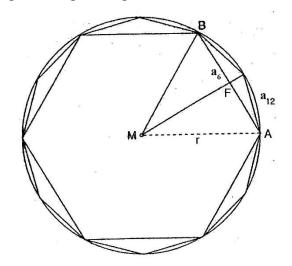
 r_1 Inkreisradius

Ein regelmäßiges n-Eck mit Seitenlänge a kann in n gleichschenklige Dreiecke aufgeteilt werden; dann folgt:

$$n = n$$

$$A = \frac{1}{2} n a r_1 = \frac{1}{2} n r_2^2 \sin(\alpha) \text{ mit } \alpha = \frac{360^{\circ}}{n}$$

Speziell: Seitenlänge und Umfang eines regelmäßigen Zwölfecks:



Wir wählen für die folgende Rechnung für den Durchmesser des Umkreises einfach d=1, also ist der Radius $r=\frac{1}{2}$. Bekanntlich gilt im regelmäßigen Sechseck: $a_6=r$, hier also $a_6=\frac{1}{2}$. Außerdem ist \overline{MF} die Höhe in einem gleichseitigen Dreieck mit der Seitenlänge $a_6=r=\frac{1}{2}$, also ist $\overline{MF}=\frac{\sqrt{3}}{2}\cdot\frac{1}{2}=\frac{\sqrt{3}}{4}$.

Nun verwenden wir den Satz von Pythagoras im Dreieck FBA:

$$(a_{12})^2 = \left(\frac{r}{2}\right)^2 + \left(r - \overline{MF}\right)^2$$

$$(a_{12})^2 = \left(\frac{1}{4}\right)^2 + \left(\frac{1}{2} - \frac{\sqrt{3}}{4}\right)^2$$

$$(a_{12})^2 = \frac{1}{16} + \frac{1}{4} - \frac{\sqrt{3}}{4} + \frac{3}{16}$$

$$(a_{12})^2 = \frac{2 - \sqrt{3}}{4}$$

$$a_{12} = \frac{\sqrt{2 - \sqrt{3}}}{2} \approx 0,2588$$

Wenn man praktisch dieselbe Rechnung noch einmal macht (wieder: Dreiecke halbieren, Pythagoras, ...), erhält man die Seitenlänge eines 24-Ecks, daraus dann wiederum die Seitenlänge eines 48-Ecks usw. Für den Umfang folgt dann

$$u_{12} = 12 \cdot a_{12} \approx 3,1058$$

bzw. allgemeiner für un:

n-Eck	Umfang des einbeschriebenen n-Ecks
6	3.0000000000000000
12	3.105828541230249
24	3.132628613281236
48	3.139350203046864
96	3.141031950890505
192	3.141452472285456
384	3.141557607911851
768	3.141583892148311
1536	3.141590463228042
3072	3.141592105999263
6144	3.141592516692148
12288	3.141592619365373
24576	3.141592645033680
49152	3.141592651450755
95304	3.141592653055023
196608	3.141592653456089
393216	3.141592653556355
786432	3.141592653581421
1572864	3.141592653587687
3145728	3.141592653589253

Es fällt auf: Wenn n immer größer wird,

Man sagt, dass sich der Umfang dem Grenzwert (lateinisch: Limes)

annähert und schreibt:

$$\lim_{n\to\infty}u_n=$$

Eine ähnliche Rechnung wurde übrigens bereits vom griechischen Mathematiker Archimedes von Syrakus etwa 250 v. Chr. durchgeführt; er ging dabei bis zum 96-Eck, verwendete sowohl Umkreise als auch Inkreise und erhielt damit die Abschätzung, dass π zwischen $3\frac{10}{71}$ und $3\frac{1}{7}$ liegen muss.