Proof of formula (A4)

We claimed that if Ej # €, for all £, then for N, K > 1
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holds, where ”other terms” refers to summands in which
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with j # 1 appears, but no other ws-denominators.

Here the set of all ordered partitions with K elements of the integer N4+ K —1
will be denoted by P(N, K), and for p € P(N, K), p; means the element number
j of the K-tuple p. An ordered partition with K elements of N is a K-tuple for
which the sum of the elements gives V.

This formula will be proven here by induction. For N = K = 1, we have
simply:
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where a partial fraction decomposition was done and P(1,1) = (1). Hence the
formula (1) is right in the case N = K = 1.

Consider then first the induction for K, i. e., assume that the formula is right
for a given N and all 1,..., K, and look at the case with K + 1:
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Extracting one term from both products and doing a partial fraction decomposi-
tion for these terms then gives

1 1 1 K 1
(Wi + € + 10N wp + €, + 107 Wy + Egeyy +i0% i wy + By, + 40+

B 1 1 1 1 K 1
 (wp e 0N By — ep \Wr T 6 +i107  wp+ B +i0t ) 15 wy + B} +i0*

This can also be written as
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The first term above can be rewritten using the induction assumption. In the
second, another partial fraction decomposition is done, yielding
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The second-to-last term can again be rewritten using the induction assumption,
and for the last term, yet another partial fraction decomposition can be done:
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Proceeding in the same way, we obtain
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This can also be written as
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where P is the following set of ordered partitions of N + K with K + 1 elements:
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But this means that P = P(N, K + 1), and thus
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which completes the induction proof for K.

In an analogous way, if we assume that the formula is right for for all 1,..., K
and a given N, it can be shown that for N + 1, we have
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which also can be rewritten as
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Here, P is the following set of ordered partitions of N + K with K elements:

P = {(pi.p2...,px +1Ip € P(N, K)}
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It can be seen that P = P(N + 1, K), and thus
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completing the induction proof for N and thus the proof of (1).



