
Proof of formula (A4)

We claimed that if Ẽk 6= ǫp for all k, then for N, K ≥ 1
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holds, where ”other terms” refers to summands in which
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with j 6= 1 appears, but no other ωf -denominators.
Here the set of all ordered partitions with K elements of the integer N +K−1

will be denoted by P (N, K), and for p ∈ P (N, K), pj means the element number
j of the K-tuple p. An ordered partition with K elements of N is a K-tuple for
which the sum of the elements gives N .

This formula will be proven here by induction. For N = K = 1, we have
simply:
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ωf + Ẽ1 + i0+
=

1
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where a partial fraction decomposition was done and P (1, 1) = (1). Hence the
formula (1) is right in the case N = K = 1.

Consider then first the induction for K, i. e., assume that the formula is right
for a given N and all 1, . . . , K, and look at the case with K + 1:
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Extracting one term from both products and doing a partial fraction decomposi-
tion for these terms then gives
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This can also be written as
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The first term above can be rewritten using the induction assumption. In the
second, another partial fraction decomposition is done, yielding
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The second-to-last term can again be rewritten using the induction assumption,
and for the last term, yet another partial fraction decomposition can be done:
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(Ẽk − ǫp)pk

+
(−1)N+1

ωf + ǫp + i0+

1
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Proceeding in the same way, we obtain
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This can also be written as
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where P̃ is the following set of ordered partitions of N +K with K +1 elements:

P̃ = {(p1, p2, . . . , pK , 1)|p ∈ P (N, K)}

∪ {(p1, p2, . . . , pK , 2)|p ∈ P (N − 1, K)}

∪ . . .

∪ {(p1, p2, . . . , pK , N)|p ∈ P (1, K)}.

But this means that P̃ = P (N, K + 1), and thus
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which completes the induction proof for K.

In an analogous way, if we assume that the formula is right for for all 1, . . . , K
and a given N , it can be shown that for N + 1, we have
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(Ẽk − ǫp)pk

+
(−1)N+2

ωf + ǫp + i0+

∑

p∈P (N,K−1)

1
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which also can be rewritten as
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Here, P̃ is the following set of ordered partitions of N + K with K elements:

P̃ = {(p1, p2, . . . , pK + 1)|p ∈ P (N, K)}

∪ {(p1, p2, . . . , pK−1 + 1, 1)|p ∈ P (N, K − 1)}

∪ . . .

∪ {(p1 + 1, 1, . . . , 1)|p ∈ P (N, 1)}.

It can be seen that P̃ = P (N + 1, K), and thus
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completing the induction proof for N and thus the proof of (1).
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