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Abstract

A generalization of the Wronskian relation for the Schrödinger equation in

three dimensions is found. This generalization is used to calculate an equiv-

alent local potential for arbitrary, non-rotationally invariant non-local poten-

tials, by an extension of Fiedeldey’s Wronskian method. The final equations

are given in a matrix notation, and the differences to Fiedeldey’s results are

discussed. For the special cases of mirror and cylindrical symmetry, the re-

sulting simplifications are examined.

1 Introduction

In order to describe scattering of a projectile by a many-body target in a one-
particle picture, one generally uses non-local potentials, often also called optical
potentials [1–7]. However, a local picture of the scattering and of the nuclear, atomic
or molecular potential is often desirable in order to make the physical processes more
clear. To this end, one can try to find a so-called equivalent local potential (ELP)
which is constructed in a way so that the asymptotic behaviour of the wave function
and the spectrum of the original Hamilton operator (which included the non-local
potential) are reproduced.

In nuclear as well as in atomic physics, the non-local potentials are in general
rotationally invariant, and the resulting ELP is taken to be spherically symmetric.
Several well-established methods are known for finding such a potential - see e.g.
[4, 8–12] for applications in nuclear physics and [13, 14] for atomic physics; for a
review which compares different methods, see [15]. However, in applications in
molecular physics, the non-local potentials (optical potentials) are in general not
rotationally invariant, and the ELP can not be spherically symmetric. Additionally,
even in nuclear physics one sometimes has to deal with potentials which are only
cylindrically symmetric (prolate and oblate nuclei). To our knowledge, no attempt
was made so far to extend the well-established methods mentioned above to a
treatment of full three-dimensional problems.

Our approach here is based on the Wronskian method, which was first presented
by Fiedeldey in [9]. After introducing our terminology in section 2, we present in
section 3 a three-dimensional analogue to the well-known fact that the Wronskian
for two linearly independent solutions of the one-dimensional Schrödinger equation
is constant. Using this generalized Wronskian relation leads us in section 4 to
matrix equations for the ELP as well as the Perey factor [16]. Section 5 deals with
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the simplifications which arise in the presence of mirror and cylindrical symmetry.
Finally section 6 contains our summary and some concluding remarks.

2 Terminology and basic equations

Let us begin by stating the problem more precisely: Given is a wave function ψ(~r)
satisfying the Schrödinger equation with a non-local potential Σ(~r, ~r′):

−
1

2
∆ψ(~r) +

∫

d3r′Σ(~r, ~r ′)ψ(~r ′) = Eψ(~r). (1)

The goal now is to find an ELP V (~r) and a so-called local wave function φ(~r)
satisfying

−
1

2
∆φ(~r) + V (~r)φ(~r) = Eφ(~r) (2)

such that
ψ(~r) = f(~r)φ(~r) (3)

with
f(~r) → 1 for |~r| → ∞. (4)

The function f is called the Perey factor [16].
In order to reduce this problem to a set of coupled one-dimensional equations, we

now make a partial wave expansion (PWE) of the functions as well as the potentials:

ψ(~r) =
1

r

∑

lm

ψlm(r)Ylm(θ, ϕ)

φ(~r) =
1

r

∑

lm

φlm(r)Ylm(θ, ϕ)

Vlml′m′(r) = 2

∫

dΩY ∗
lm(θ, ϕ)V (~r)Yl′m′(θ, ϕ)

Σlml′m′(r, r′) = 2

∫

dΩ

∫

dΩ′Y ∗
lm(θ, ϕ)rr′Σ(~r, ~r′)Yl′m′(θ′, ϕ′)

and introduce the usual abbreviation k2 = 2E. This yields now the following
equations for the coefficients of the non-local and the local wave functions:

ψ′′
lm(r) +

(

k2 −
l(l + 1)

r2

)

ψlm(r) −
∑

l′m′

∫

dr′Σlml′m′(r, r′)ψl′m′(r′) = 0 (5)

φ′′lm(r) +

(

k2 −
l(l+ 1)

r2

)

φlm(r) −
∑

l′m′

Vlml′m′(r)φl′m′(r) = 0. (6)

Additionally, we introduce a partial wave expansion for the Perey factor:

flml′m′(r) =

∫

dΩY ∗
lm(θ, ϕ)f(~r)Yl′m′(θ, ϕ) → δll′δmm′ for r → ∞. (7)

Inserting this into the equations (5,6), one is lead to the following relation between
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the non-local potential and the ELP:

∑

l′m′l′′m′′

flml′m′(r)Vl′m′l′′m′′(r)φl′′m′′(r)

=
∑

l′m′

flml′m′(r)φl′m′(r)

(

l(l+ 1)

r2
−
l′(l′ + 1)

r2

)

− 2
∑

l′m′

f ′
lml′m′(r)φ′l′m′(r) −

∑

l′m′

f ′′
lml′m′(r)φl′m′(r)

+
∑

l′m′l′′m′′

∫

Σlml′m′(r, r′)fl′m′l′′m′′(r′)φl′′m′′(r′)dr′. (8)

We now define the abbreviation

fL
lml′m′(r) = flml′m′(r)

(

l(l + 1)

r2
−
l′(l′ + 1)

r2

)

and introduce a matrix notation for V , Σ, f and fL, and, correspondingly, a vector
notation for φ. Then the equation above takes the simple form

f(r)V(r)~φ(r) = fL(r)~φ(r) − 2f ′(r)~φ′(r) − f ′′(r)~φ(r) +

∫

Σ(r, r′)f(r′)~φ(r′)dr′. (9)

This equation, which is analogous to eq. (6) in [9], will be our starting point for
constructing the ELP.

3 The three-dimensional Wronskian relation

In order to proceed as in [9], we now have to express ~φ(r′) in eq. (9) by a suitable

linear combination of ~φ(r) and ~φ′(r). To this end, we introduce functions ωlm which
solve the following equations:

ω′′
lm(r) +

(

k2 −
l(l+ 1)

r2

)

ωlm(r) −
∑

l′m′

Vl′m′lm(r)ωl′m′(r) = 0 (10)

Note the change in the order of the indices of V , compared to (6). If one defines

ω(~r) =
1

r

∑

lm

ωlm(r)Y ∗
lm(θ, ϕ) =

1

r

∑

lm

ωlm(r)Ylm(θ,−ϕ)

(note the complex conjugation of the spherical harmonic), then ω(~r) fulfills the same
equation (2) as φ(~r). Using these functions, we now get:

d

dr

∑

lm

(ωlm(r)φ′lm(r) − ω′
lm(r)φlm(r))

=
∑

lm

(ωlm(r)φ′′lm(r) − ω′′
lm(r)φlm(r))

=
∑

lml′m′

(ωlm(r)Vlml′m′(r)φl′m′(r) − φlm(r)Vl′m′lm(r)ωl′m′(r))

= 0

and hence
∑

lm

(ωlm(r)φ′lm(r) − ω′
lm(r)φlm(r)) = const.
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These results for the PWE coefficients can also be expressed by the full functions:

∑

lm

(ωlm(r)φ′lm(r) − ω′
lm(r)φlm(r))

= r2
∫

dΩ

[

ω(~r)

(

d

dr
+

1

r

)

φ(~r) − φ(~r)

(

d

dr
+

1

r

)

ω(~r)

]

= r2
∫

dΩ

[

ω(~r)
d

dr
φ(~r) − φ(~r)

d

dr
ω(~r)

]

and hence

d

dr

∑

lm

(ωlm(r)φ′lm(r) − ω′
lm(r)φlm(r))

= r2
∫

dΩ

[

ω(~r)

(

d2

dr2
+

2

r

)

φ(~r) − φ(~r)

(

d2

dr2
+

2

r

)

ω(~r)

]

= r2
∫

dΩ [ω(~r)∆φ(~r) − φ(~r)∆ω(~r)]

= 0,

where it was used that the square of the angular momentum operator is hermitean,
and that both φ and ω fulfill (2). It follows that

r2
∫

dΩ

[

ω(~r)
d

dr
φ(~r) − φ(~r)

d

dr
ω(~r)

]

= const.,

in complete accordance with the results above. This expresses a generalization of
the well-known fact that for two linear independent solutions of the one-dimensional
Schrödinger equation, the Wronskian is constant. We will discuss later under which
circumstances one can prove that two functions exist for which this constant is
non-zero, and give the proof in the appendix.

4 Matrix equations for ELP and Perey factor

Here we simply assume that two sets of functions which satisfy (3) with a non-zero
constant exist, and choose their normalizations in a way so that

∑

lm

(ωlm(r)φ′lm(r) − ω′
lm(r)φlm(r)) = r2

∫

dΩ

[

ω(~r)
d

dr
φ(~r) − φ(~r)

d

dr
ω(~r)

]

= 1. (11)

We then define

αl′m′lm(r′, r) = φ′lm(r)ωl′m′(r′) − ω′
lm(r)φl′m′(r′) = −

d

dr
βl′m′lm(r′, r)

βl′m′lm(r′, r) = ωlm(r)φl′m′(r′) − φlm(r)ωl′m′(r′). (12)

This implies:

∑

lm

(αl′m′lm(r′, r)φlm(r) + βl′m′lm(r′, r)φ′lm(r)) = φl′m′(r′), (13)

or, by introducing a matrix notation for α and β:

~φ(r′) = α(r′, r)~φ(r) + β(r′, r)~φ′(r). (14)
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Inserting all of the PWEs again, this leads to

φ(~r ′) = r2
∫

dΩ

[

α(~r ′, ~r)φ(~r) + β(~r ′, ~r)

(

∂r +
1

r

)

φ(~r)

]

with

α(~r ′, ~r) =

(

∂r +
1

r

)

[

φ(r, θ,−ϕ)ω(r′, θ′,−ϕ′) − ω(r, θ, ϕ)φ(r′, θ′, ϕ′)
]

= −

(

∂r +
1

r

)

β(~r ′, ~r)

β(~r ′, ~r) = ω(r, θ, ϕ)φ(r′, θ′, ϕ′) − φ(r, θ,−ϕ)ω(r′, θ′,−ϕ′).

Hence now we have managed to express φ at the point ~r ′ by the values of φ and
its normal derivative ∂rφ on a whole surface. This is reminiscent of the Cauchy
boundary conditions which are necessary to specify a solution of the Schrödinger
equation uniquely.

Inserting (14) into our equation (9) for the ELP, we get:

f(r)V(r)~φ(r) = fL(r)~φ(r) − 2f ′(r)~φ′(r) − f ′′(r)~φ(r) (15)

+

∫

Σ(r, r′)f(r′)α(r′, r)dr′~φ(r) +

∫

Σ(r, r′)f(r′)β(r′, r)dr′~φ′(r).

If we now require that
∫

Σ(r, r′)f(r′)β(r′, r)dr′~φ′(r) − 2f ′(r)~φ′(r) = 0, (16)

analogously to [9], this results in

f(r)V(r)~φ(r) = fL(r)~φ(r) − f ′′(r)~φ(r) +

∫

Σ(r, r′)f(r′)α(r′, r)dr′~φ(r). (17)

Sufficient conditions for (16) and (17) to be satisfied are

f ′(r) =
1

2

∫

Σ(r, r′)f(r′)β(r′, r)dr′ (18)

V(r) = f−1(r)fL(r) − f−1(r)f ′′(r) + f−1(r)

∫

Σ(r, r′)f(r′)α(r′, r)dr′. (19)

These equations are now almost completely analogous to the eqs. (11) and (12)
in [9] (note the different conventions for the order of the arguments of α and β).
The additional term fL which appears here expresses the fact that the angular
momentum barrier changes when the particle is scattered from an l′′-state into an
l-state.

Exactly like the equations given in [9], this system of coupled differential equa-
tions can be solved by an iterative procedure: choose an initial approximation for
V (~r) and f(~r) resp. their PWEs, solve (6) for φlm(r) and (10) for ωlm(r), calcu-
late αl′m′lm(r′, r) and βl′m′lm(r′, r) from them and use these results to obtain a
new, improved approximation to the PWEs of V (~r) and f(~r) by solving (18) and
(19). Repeat this procedure until convergence is obtained. When solving (18), pay
attention to the boundary conditions for flml′m′(r) given in (7).

One can also obtain equations for the functions f and V themselves by contract-
ing (18) and (19) with vectors of spherical harmonics from the left and the right.
The results are:

(

∂r +
1

r

)

f(r, θ1, ϕ1)δ(Ω1 − Ω2) =
1

2

∫

d3r′Σ(~r ′, r, θ1, ϕ1)f(~r ′)β(~r ′, r, θ2, ϕ2)

(20)
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and
[

f(r, θ1, ϕ1)V (r, θ1, ϕ1) − ∆rf(r, θ1, ϕ1)
]

δ(Ω1 − Ω2)

=

∫

d3r′Σ(r, θ1, ϕ1, ~r
′)f(~r ′)α(~r ′, r, θ2, ϕ2), (21)

where ∆r denotes the radial part of the Laplacian. Note that the term with fL has
cancelled out here. Because of the delta function δ(Ω1 − Ω2) for the solid angles
which appears in these equations, they are rather impractial to solve directly; it is
easier to solve the coupled systems of equations (18) and (19) for the partial wave
coefficients iteratively, and compute the full three-dimensional ELP only after the
calculation has converged.

5 Special symmetries

In the presence of certain symmetries, our results can be simplified. First we discuss
the Cs symmetry (which is rather common at least for small molecules) - specifically,
a mirror symmetry at the x-z-plane:

Σ(r, θ,−ϕ, r′, θ′,−ϕ′) = Σ(r, θ, ϕ, r′, θ′, ϕ′)

V (r, θ,−ϕ) = V (r, θ, ϕ).

In this case, the PWE coefficients of the ELP are symmetric with respect to an
interchange of (l,m) and (l′,m′). Then (10) becomes identical to (6), i.e. the ωlm

obey the same equations as the φlm. For this special case, we prove in the appendix
that there always exist two solutions φlm and ωlm which satisfy (3) with a constant
different from zero.

Additionally, the wavefunctions can be chosen to be symmetric or antisymmetric
with respect to this reflection:

ψ(r, θ,−ϕ) = ±ψ(r, θ, ϕ).

(and analogously for φ). This implies that the nodes of the wavefunctions also lie
symmetric to the x-z-plane. Since the Perey factor was originally introduced in [9]
in order to avoid the nodes of ψ (and therefore the poles of the ’trivial’ ELP), one
can choose the Perey factor to have also this mirror symmetry:

f(r, θ,−ϕ) = f(r, θ, ϕ).

This implies that the PWE coefficients of the Perey factor are also symmetric with
respect to an interchange of (l,m) and (l′,m′), like the ELP. Hence it suffices to
calculate only the upper or lower half of f and V in every iteration step, which
saves approximately half of the necessary computation time. Alternatively, one
could calculate the whole matrices and use the requirement of symmetry as a check
for the calculation.

Even further simplifications occur in the rather special case of cylindrical sym-
metry, which is present in linear molecules, and also relevant for prolate and oblate
nuclei. What we want to consider here is a non-local potential which is invariant
under simultaneous rotation of ϕ and ϕ′:

Σ(r, θ, ϕ+ α, r′, θ′, ϕ′ + α) = Σ(r, θ, ϕ, r′, θ′, ϕ′) ∀α

and a corresponding rotationally invariant ELP:

V (r, θ, ϕ + α) = V (r, θ, ϕ) ∀α.
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Both of these potentials conserve the z component of angular momentum, so that
their PWEs expansions take the special form

Σlml′m′(r, r′) = Σ
(m)
ll′ (r, r′)δmm′

Vlml′m′(r) = V
(m)
ll′ (r)δmm′ .

Since cylindrical symmetry implies mirror symmetry at the x-z-plane, the ELP is
symmetric in the indices l and l′. The wavefunctions can now be chosen to be eigen-
functions of the z component of the angular momentum. If ψ is an eigenfunction
with eigenvalue m, it has the property

ψ(r, θ, ϕ+ α) = ψ(r, θ, ϕ)eimα ∀α.

This implies that if ψ(r, θ, ϕ) = 0 for particular values of r, θ and ϕ, then ψ(r, θ, ϕ) =
0 for all values of ϕ, i. e. the nodes of the wavefunctions are independent of ϕ. Again
one can argue that since the Perey factor was introduced in order to avoid the nodes
of ψ, it suffices to make the following ansatz here:

f(~r) = f(r, θ),

i.e., choose the Perey factor as a cylindrically symmetric function, like the ELP itself.
This implies that its PWE also conserves the z component of angular momentum:

flml′m′(r) = f
(m)
ll′ (r)δmm′ .

Because of the symmetry in the indices of V, φ and ω obey the same equation:

φ′′lm(r) +

(

k2 −
l(l + 1)

r2

)

φlm(r) −
∑

l′

V
(m)
ll′ (r)φl′m(r) = 0,

and, correspondingly, in the generalized Wronskian relation, there is no sum over
m - in contrast, there is now an infinite amount of such relations, which have to be
true for all m:

∑

l

(ωlm(r)φ′lm(r) − ω′
lm(r)φlm(r)) = const. ∀m

Defining

α
(m)
l′l (r′, r) = φ′lm(r)ωl′m(r′) − ω′

lm(r)φl′m(r′) = −
d

dr
β

(m)
l′l (r′, r)

β
(m)
l′l (r′, r) = ωlm(r)φl′m(r′) − φlm(r)ωl′m(r′)

and introducing matrices and vectors again, but here with an extra index m, we
can proceed now exactly as in the general case. Our final results look almost equal
to the former ones:

f ′(m)(r) =
1

2

∫

Σ(m)(r, r′)f (m)(r′)β(m)(r′, r)dr′ (22)

V(m)(r) =
(

f (m)
)−1

(r)f (m)L(r) −
(

f (m)
)−1

(r)f ′′(m)(r)

+
(

f (m)
)−1

(r)

∫

Σ(m)(r, r′)f (m)(r′)α(m)(r′, r)dr′. (23)

The crucial simplification compared to the coupled system of differential equations
(18,19) is that the cylindrical symmetry enabled us to decouple that system into sev-
eral smaller ones (one for each value of m investigated), which can be independently
solved.
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6 Summary and concluding remarks

We have generalized Fiedeldey’s one-dimensional approach to the problem of finding
an ELP by using a Wronskian relation to the general three-dimensional case. The
generalized Wronskian is expected to be non-zero. This is proven in the appendix
for the special cases of mirror and cylindrical symmetry. We used the derived
generalized Wronskian relation to find matrix equations for the ELP as well as
the Perey factor, which closely resemble Fiedeldey’s original equations [9]. The
main difference is that in the three-dimensional case, where angular momentum is
in general not conserved, an additional factor appears which takes account of the
change in the angular momentum barrier due to scattering into another angular
momentum channel. We have also shown which simplifications occur in the special
cases of Cs symmetry and cylindrical symmetry - both are relevant in molecular
physics and the second also in nuclear physics.

For completeness it would be desirable to express the Perey factor exclusively
by the solutions of the non-local Schrödinger equation (1) (like eq. (17) in [9]).
Unfortunately this can not be done as straightforwardly as in [9], since f(~r)ω(~r) is
not again a solution to (1), in contrast to the spherically symmetric case. This is
due to the changed order of indices in (10), compared to (6).

Even in the case of mirror symmetric ELPs, where the ωlm obey the same
equation as the φlm and hence λ(~r) := f(~r)ω(~r) is a solution to (1), multiplying
(18) from the right with f(r) leads only to an equation with f ′(r)f(r) on the left
hand side, which can not be written as the derivative of f2(r) directly, since the
matrices in general do not commute. This problem can be remedied by taking the
trace on both sides of the equation after multiplying it - but the resulting equation

d

dr
Tr

(

f2(r)
)

=
d

dr

(

~ψ′(r) · ~λ(r) − ~λ′(r) · ~ψ(r)
)

is not very helpful in determining f(r) either. Perhaps it could be used as a check
on the calculation, if one has both of the non-local solutions already available.

But even without being able to express f(~r) exclusively in terms of the solutions
of the non-local Schrödinger equation, the formulas derived here should be a valuable
tool for finding ELPs even for the non-spherically symmetric potentials common in
molecular and other areas of physics.
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Appendix

Here we prove that for a system of differential equations like (6), with a sym-
metrical matrix V (which corresponds to a Cs symmetry and hence also applies in
the case of cylindrical symmetry), one can find at least two solutions φlm and ωlm

which satisfy
∑

lm

(ωlm(r)φ′lm(r) − ω′
lm(r)φlm(r)) 6= 0. (A-1)

If we define
πlm(r) = φ′lm(r),
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the system (6) is equivalent to the system of differential equations of first order

φ′lm(r) = πlm(r)

π′
lm(r) =

(

l(l + 1)

r2
− k2

)

φlm(r) +
∑

l′m′

Vlml′m′(r)φl′m′(r). (A-2)

Now we look at the approximation where only N components of the PWE are
used. The system (A-2) then consists of 2N differential equations of first order for
2N functions. For each solution of this system, we introduce the 2N -dimensional
column vector

~Φ(r) = (φ00(r), π00(r), φ01(r), π01(r), φ11(r), π11(r), . . .)
T .

From the theory of ordinary differential equations, we know that such a system has
2N linearly independent solutions ~Φ(j), 1 ≤ j ≤ 2N [17], i.e. the determinant of
the Wronskian matrix

Φ = (~Φ(1), ~Φ(2), . . . , ~Φ(2N))

is different from zero.
The statement (A-1) we want to prove can now be rewritten as: there exists at

least one pair (j, k) of solutions to (A-2) with j 6= k so that

∑

lm

(

φ
(j)
lm(r)π

(k)
lm (r) − φ

(k)
lm (r)π

(j)
lm (r)

)

6= 0. (A-3)

As an abbreviation for this expression, we introduce the notation

~Φ(j) ⊙ ~Φ(k).

The product ⊙ of two vectors ~Φ(j) and ~Φ(k) is essentially a sum of commutators
and therefore bilinear and antisymmetric.

For a set M = {1, 2, . . .2N} ⊂ N, we now define the set CM consisting of all
(2N − 1)!! partitions of M into ordered pairs of elements of M ; e.g. for N = 2, we
have M = {1, 2, 3, 4} and CM = {((1, 2), (3, 4)), ((1, 3), (2, 4)), ((1, 4), (2, 3))}. For
p ∈ CM , we define: pn1 gives the first and pn2 the second element of the pair n in
the partition p, e.g. for p = ((1, 3), (2, 4)), p12 = 3. Additionally, we define for every
p the corresponding permutation πp by

πp =

(

1 2 3 4 . . . 2N − 1 2N
p11 p12 p21 p22 . . . pN1 pN2

)

,

and use this to assign a signum to p:

sgn(p) = sgn(πp).

For example, for p = ((1, 3), (2, 4)), sgn(p) = −1, since for the permutation

π =

(

1 2 3 4
1 3 2 4

)

,

sgn(π) = −1. Finally we define the following function of the matrix Φ of solutions
to (A-2):

D(Φ) =
∑

p∈CM

sgn(p)
N
∏

n=1

~Φ(pn1) ⊙ ~Φ(pn2).
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Again e.g. for N = 2, this function is given by

D(Φ) =
(

~Φ(1) ⊙ ~Φ(2)
)(

~Φ(3) ⊙ ~Φ(4)
)

−
(

~Φ(1) ⊙ ~Φ(3)
)(

~Φ(2) ⊙ ~Φ(4)
)

+
(

~Φ(1) ⊙ ~Φ(4)
)(

~Φ(2) ⊙ ~Φ(3)
)

.

Using the bilinearity of the product ⊙, it is easy to see that the function D(Φ) is

multilinear (linear in all ~Φ(j)). Additionally, for the unit matrix E we get

D(E) = 1,

hence the function is normalized. We now show that D(Φ) is also alternating, i. e.

it is zero if for two indices j and k with j 6= k, ~Φ(j) = ~Φ(k)). In the sum over all

(2N−1)!! partitions, there are (2N−3)!! addends in which ~Φ(j) and ~Φ(k) are directly
multiplied by ⊙. Because of the antisymmetry of the product, these addends are
zero. In the other ((2N − 1)!! − (2N − 3)!!) ∈ 2N addends, ~Φ(j) and ~Φ(k) appear in
different pairs. Without loss of generality, we can assume j < k. We now look at a
particular partition p. Let the other element of the pair in which ~Φ(j) appears be
~Φ(j′) and the other element of the pair in which ~Φ(k) appears be ~Φ(k′). Then there
are four possible cases:

1. j < j′, k < k′

2. j < j′, k > k′

3. j > j′, k < k′

4. j > j′, k > k′

In case 1, the partition p looks like

p = (. . . (j, j′) . . . (k, k′) . . .),

where the dots stand for the remaining pairs. For every such partition p, exactly
one partition p′ exists in which j is paired with k′ and k with j′, and all the other
pairs are equal to the ones in p. Here one has to distinguish two cases (the other
two can not appear because of our assumption j < k):

a. j < k′, k < j′

b. j < k′, k > j′

In case 1a, the partition p′ looks like

p′ = (. . . (j, k′) . . . (k, j′) . . .).

Here we have sgn(p′) = −sgn(p), and therefore we get for the two corresponding
addends in D(Φ):

sgn(p)
[

. . .
(

~Φ(j) ⊙ ~Φ(j′)
)

. . .
(

~Φ(k) ⊙ ~Φ(k′)
)

. . .
]

+sgn(p′)
[

. . .
(

~Φ(j) ⊙ ~Φ(k′)
)

. . .
(

~Φ(k) ⊙ ~Φ(j′)
)

. . .
]

= sgn(p)
[

. . .
(

~Φ(j) ⊙ ~Φ(j′)
)

. . .
(

~Φ(k) ⊙ ~Φ(k′)
)

. . .

− . . .
(

~Φ(j) ⊙ ~Φ(k′)
)

. . .
(

~Φ(k) ⊙ ~Φ(j′)
)

. . .
]

= 0 for ~Φ(j) = ~Φ(k).
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In case 1b, the partition p′ looks like

p′ = (. . . (j, k′) . . . (j′, k) . . .).

Here we have sgn(p′) = sgn(p) and therefore we get for the two corresponding
addends in D(Φ):

sgn(p)
[

. . .
(

~Φ(j) ⊙ ~Φ(j′)
)

. . .
(

~Φ(k) ⊙ ~Φ(k′)
)

. . .
]

+sgn(p′)
[

. . .
(

~Φ(j) ⊙ ~Φ(k′)
)

. . .
(

~Φ(j′) ⊙ ~Φ(k)
)

. . .
]

= sgn(p)
[

. . .
(

~Φ(j) ⊙ ~Φ(j′)
)

. . .
(

~Φ(k) ⊙ ~Φ(k′)
)

. . .

− . . .
(

~Φ(j) ⊙ ~Φ(k′)
)

. . .
(

~Φ(k) ⊙ ~Φ(j′)
)

. . .
]

= 0 for ~Φ(j) = ~Φ(k),

where the antisymmetry of the product ⊙ was used. The other cases (2-4) can be

treated analogously. Hence we have proven now that, if ~Φ(j) = ~Φ(k) (j 6= k), for
every partition p, there exists exactly one partition p′ such that the corresponding
addends in the sum in D(Φ) add up to zero - and this implies that for ~Φ(j) = ~Φ(k)

(j 6= k), D(Φ) = 0.
We have shown now that D is a multilinear, normalized and alternating function

of Φ. These are exactly the properties of the determinant, hence we conclude

D(Φ) = detΦ.

Now the proof of our statement becomes quite easy - we use a proof by contra-
diction: Assume that for every pair of indices (j, k) with j 6= k

~Φ(j) ⊙ ~Φ(k) = 0.

This would imply
D(Φ) = 0,

and hence
detΦ = 0.

But this is a contradiction, because the determinant of the Wronskian for the 2N
solutions of (A-2) is non-zero.

Hence we can conclude that there is at least one pair of indices (j, k) with j 6= k

for which
~Φ(j) ⊙ ~Φ(k) 6= 0,

which completes our proof.
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