Die natürliche Logarithmusfunktion

Definition:

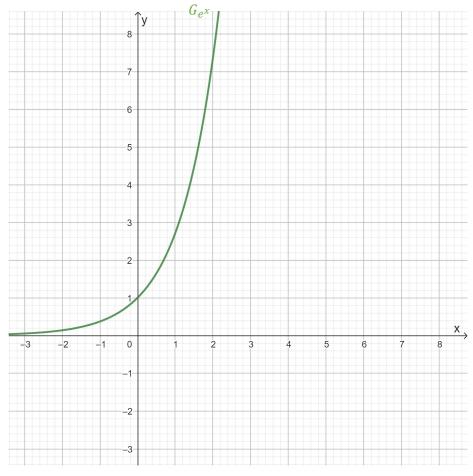
Die Funktion mit dem Term $f(x) = \ln(x)$ mit $D_f =$

heißt natürliche Logarithmusfunktion.

 $y = e^x \iff x = \ln(y)$ beide Gleichungen beschreiben denselben Graphen!

 \rightarrow Man erhält den Graphen zu $y = \ln(x)$, indem man x mit y vertauscht. Graphisch erreicht man das durch eine Spiegelung an

(Die natürliche Logarithmusfunktion ist die "Umkehrfunktion" zur natürlichen Exponentialfunktion, s. Buch S. 58.)



Eigenschaften:

•
$$W_f =$$

• Nullstelle:
$$x_1 =$$

• Asymptote:

•
$$\lim_{x \to} \ln(x) =$$
 ; $\lim_{x \to} \ln(x) =$

Allgemeiner gilt: $\lim_{x \to \infty} x^r \cdot \ln(x) =$; $\lim_{x \to \infty} \frac{\ln(x)}{x^r} =$ für alle r > 0, d. h. der Logarithmus gegen jede positive Potenz.

- Monotonie:
- Krümmung:
- Der Graph ist stetig in ganz D_f .

Allgemeinere In-Funktionen: $f(x) = a \cdot \ln(c \cdot (x - d)) + y_0$ mit $a, c, d, y_0 \in \mathbb{R}$, $a, c \neq 0$ (Vorsicht: In Buch und Lehrplan steht stattdessen $f(x) = a \cdot \ln(bx - c) + d$.)

• y_0 G_f nach

• d G_f nach \rightarrow s. As.:

• a G_f in -Richtung; für a < 0:

Vorsicht: Nicht eindeutig!

Beispiel:
$$f(x) = \ln(2x)$$
 $\Rightarrow a = ; c = ; d = ; y_0 =$
 $\Rightarrow a = ; c = ; d = ; y_0 =$

Beide Funktionsterme beschreiben denselben Graphen!