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Abstract

Two different diagrammatic construction schemes for obtaining the propagator for inelastic elec-
tronic scattering are presented. Both are discussed for the three cases that the target molecule
of interest is closed-shell itself or has a closed-shell anion or cation. The ”direct approach” yields
the inelastic propagator directly, but has the drawback that it requires the evaluation of a large
number of diagrams already in low orders. The ”"Dyson approach” uses Dyson-like equations for
the inelastic propagator and employs a diagrammatic construction scheme for the generalized one-
particle densities only. It therefore requires a considerably lower number of diagrams. Results are
given up to first order for both methods and all three cases. Alternative approaches are briefly

discussed and compared with our methods.
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I. INTRODUCTION

Green’s functions provide a powerful tool for studying the properties of many-body sys-
tems, in elementary particle physics as well as in nuclear, atomic and molecular physics.
They can be used to describe properties of bound states (see e. g. [1-5]) as well as scat-
tering: As shown already in [6], the usual one-particle Green’s function (also called the
propagator) obeys a Dyson equation, where the self-energy is an optical potential [7] for
elastic scattering. The theory for calculating the propagator for elastic scattering and with
it the scattering matrix, phase shifts and resonance energies is well-developed and has been
in wide use for several decades now [8-14].

In contrast, only very few attempts were made to also treat inelastic scattering with
Green’s function methods (see e. g. the pioneering work of Csanak et al.[15, 16]). In-
elastic scattering processes involve excited states of molecules, and such systems are out-of-
equilibrium. Keldysh has developed a diagrammatic technique for dealing with such systems
forty years ago [17], but his approach deals mainly with statistical systems under the action
of an external field. In contrast, we are concerned here with transitions of molecules between
well-defined excited states.

In recent years, a formally exact theory for inelastic scattering of non-electronic projecti-
cles from molecular targets was developed [18, 19]. This case is simpler than the scattering
of electrons, since the projetile is distinguishable from the particles of the target. For the
case where the projectile is indistinguishable from the target particles, the situation is much
more complicated [20-22]. There also exists a method for the exact treatment of the inelastic
scattering of electrons for the case that rotational and vibrational degrees of freedom of the
target molecule are excited [23].

What is still missing is a systematic diagrammatic method for explicitly evaluating the
inelastic propagator for transitions between electronically excited states. In contrast, di-
agrammatic evaluation procedures for the elastic propagator have long been known and
used in the literature (e. g. the Algebraic Diagrammatic Construction scheme [1]). In this
work, we address this open problem by presenting two different diagrammatic approaches
for calculating the inelastic propagator.

An additional, at first sight unrelated problem is that the standard Green’s function

methods work only for closed-shell molecules. Promising attempts were made to extend



them also to open-shell systems [24, 25], but again a systematic diagrammatic treatment of
the problem is missing. The methods we will present for calculating the inelastic propagator
are also applicable to scattering off molecules which only have a closed-shell anion or cation,
but are open-shell in their neutral state. Hence they can open up the opportunity to study
elastic as well as inelastic propagators for open-shell molecules. We will show that the dia-
grammatic treatment of such molecules with our methods is even easier than the application
to scattering off closed-shell molecules.

Section II first briefly reviews the various possible definitions for the inelastic propagator
discussed in [21] and then illustrates a ”direct” approach for obtaining these propagators.
Since this approach has the drawback that the evaluation of a large number of diagrams
is required even in low orders, section III describes an alternative method, employing the
Dyson-like equation for the particle component of the inelastic propagator developed in [21].
A Dyson-like equation for the hole component is also presented there, and it is demonstrated
for the first time how one can completely separate the two time-orderings of the propagator.
Then, it is outlined how one can obtain the generalized one-particle densities occuring in
the Dyson-like equations by using a diagrammatic approach. Finally, section IV summarizes
our results and compares our methods with other approaches for obtaining the inelastic

propagator or the generalized one-particle densities.

II. DIRECT CALCULATION OF THE INELASTIC PROPAGATOR

A. Various possible definitions for the inelastic propagator

In [21], it was shown that in order to ensure energy conservation, the inelastic propagator
has to be defined by
G, i@~ [M.N] (4 4
Zqu[M’N}(T) = —0(-7) < M‘C;(t/)cp(t)“\[ S (i® (t.)

where

GRMN(r) = GHMN () 4+ G, MNI(7),

and the phases have to satisfy
OTMN(3 ¢y = —(EM — O 4 (BN — B0y 4 pHIMNT (7 (2)
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O~EN(g ¢y = —(EM — gy 4 (BN — Bl 4 p=MN (1)

The ¢, and cg are the usual destruction and creation operators, E¥ is the energy of the
ground state |0 >, and the E/™ are the energies of the excited states |M >. The F*MN are
arbitrary functions of the time difference 7 = t—t'. For faciliating the Fourier transformation

of the propagator, it is convenient to choose these functions to be linear:

FEIMN] (r) = f:l:[M,N}T

with constant factors fHMN and f~IMN1,
Three different possible choices for the phases were studied in detail in [21]. Note that
for all of them, G][D%’O} is identical to the usual text book propagator, which we may call the

"elastic propagator”.

1. One can choose the fFVMl simply to be zero. The resulting propagator is called the

"natural” Green’s function and will be denoted with a ”n” in its superscript.

2. It was pointed out in [21] that many calculations can be simplified if the two phases
are the same. Since in scattering processes, essentially only the particle component
G™ of the propagator is needed, it is sensible to keep the phase of that part the same
as before and only change the phase for the hole component. The resulting propagator
is called the ”scattering-motivated” Green’s function and will be denoted with a ”s”

in its superscript. The corresponding phases are:
OHsIMN(g ¢y = @ IMN(¢ ¢y = —(EIM) — EOht 4 (BN — By, (3)

i.e. frIMNT =0 and f~IMN = —pMl _ pIN] L 9 plO],

3. Finally, it turns out that if one wants to study ionization processes instead of scattering,
it is convenient to change the particle component G and keep the hole component
of the natural Green’s function. The resulting propagator is called the ”ionization-
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motivated” Green’s function and will be denoted with an in its superscript. The

corresponding phases are:
QTN (¢ ¢y = @7 IIMN (¢ ¢y = —(EM) — B0y 4 (EINT — B0y (4)

i.e. f[TMN =0 and fHMN = M PINT 2 B0 Tn contrast to [21], we have not
exchanged the order of the indices N, M here, for reasons which will soon become

clear.



In the following, we will outline how one can obtain the inelastic Green’s function for
transitions between electronically excited states directly. We will demonstrate the method

for three different types of molecules from which the electron is scattered:
1. The molecule is closed-shell itself.
2. The molecule has a closed-shell anion.
3. The molecule has a closed-shell cation.

Hence when one calculates the inelastic propagator, one has, compared to the elastic prop-
agator, the additional advantage that this can not only be done for closed-shell molecules,
but is also possible if the molecule only has a closed-shell anion or cation. Actually, it will
turn out that these cases are even easier to treat than the case of a closed-shell molecule,
and are very similar to each other.

The method described in this section will be referred to as the direct approach in the

following.

B. Closed-shell molecule

The main idea of all approaches discussed here is to use higher Green’s functions, which
are defined with respect to the ground state of the closed-shell molecule of interest (or
the corresponding ion), and hence can be computed using the standard Feynman diagram
methods. The spectral representations of these higher Green’s functions then establish a
connection with the desired inelastic propagators.

Here we define the six-point, four-times Green’s function

szqutu(tf,t t/ t) (5)
= — <O [cf(tp)ey(tp)en(t)el (¥)ef (t:)eu(ts)] 10 >
+ < OIT [l (t1)eqltr)en(t)el ()] 10 >< Olcf (t:)eu(t:)]0 >
(
i

+<NTQ¢)(>()umﬂm><m5WﬁNﬂM>
+ < O[T [ef () eqtr)el (t:)eu(ti)] [0 >< O|T [er(t)el ()] 0 >

~2 < 0/} (t1)eg(t1)|0 >< 0T [e,(£)el(t)] 0 >< 0[] (t:)eu(£:)]0 >,



SN

FIG. 1: Disjoint diagrams which do not contribute to the four-times Green’s function for a closed-

shell molecule

where the factorized terms which are subtracted or added to eliminate disjoint diagrams of
the general structure shown in Fig. 1 in the diagrammatic expansion, and the overall sign
is chosen to give a convenient spectral representation. The time indices "f” and ”i” mean
”final” and ”initial”, respectively. 7' denotes the usual time ordering operator.

The natural interpretation of this higher-order Green’s function is that at the time ¢;,
an excitation of the molecule of interest is created, and at time ¢y, another excitation is
destroyed. These two excited states serve as the background on which the propagation of
an electron (or a hole) is studied. We will show below in detail how far this intuitive picture
of the meaning of this Green’s function indeed holds true.

Note that the six-point, six-times Green’s function was already discussed extensively in
[26]; we concentrate here on the special case of four times and show how it can be applied
to the problem at hand.

There are 4! = 24 different time orderings possible for this Green’s function. All quantities
depend only on the three time differences 7y =t; —t, 7 =t —t' and 7, = t' — ¢;, and hence

we can write:

RP(ITStU(tfv ta tlu tl) = e(Tf)e(T>8(TZ)R;{12”5tu (Tfa T, Ti)

+ 0(r))0(—7)0(m) RS, (75, 7, 72)

+

For the first four time orderings, we choose:

Litp>t>t >



II. tf>t/>t>ti
II. t; >t >t >ty
IV. t; >t >t >ty

The remaining 20 time orderings give rise to contributions which are not of interest here.

1. Connection to the inelastic propagator

We treat here only the first time ordering in detail and give later the results for the second
to fourth orderings briefly. We denote these four contributions to R corresponding to the
above introduced time orderings by RY), RUD  RUID and RIY). For ty >t >1t >t one

obtains the simplified expression
ZR;(){])rstu (tfa t, t,7 tz)

= — < 0fef(tr)eq(tr)(L =0 >< 0])e,(t)el (1) (1 = |0 >< O])ef (t)eu(t:)|0 >

- < O|c;(tf)cq(tf)(1 —10>< O|)cI(ti)cu(ti)|0 >< 0|, (t)ek ()]0 > .
Writing the 1 using a complete set yields:

iRttt t) = — S0 <0|ch(tp)ey(t7)|M >< Ncl(t;)eu(t:)|0 >
M=#£0,N#£0

(< Mler(B)el ()N > =darw < Olen ()l ()]0 >).

Using the time dependence of the destruction and creation operators and introducing the

generalized one-particle densities
pg’M} =< N\chq\M >, (6)
one can rewrite RY) to take on the following appearance:

(1 N,0] —i(EM]I_Elo] —i(EINI—EOly7,
ZR;q)rstu (Tfa t> tla Ti) = - Z pg[goéM]pz[fu ]e iE F )Tfe i B
M#0,N#0

(< Mlex(®)el ()N > =8prn < Olen()cl ()]0 >)

.6—2‘(E[M]—E[O])te—i-i(E[N]—E[O])t’



With the definition of the particle component of the natural inelastic Green’s function
GTIVM]one readily finds the interrelation
_(EMI_EO), . i(pIN]_glo]
R(Wstu(Tf?T TZ) - = Z p;LOqM]pgu 0 (e E )fe (e B
M#0,N#0

. (G;j‘sn[M,N] (1) — (')"MNG;FS[O,O} (T)e_i(E[AI]_E[O])T) .

Fourier transforming with respect to 74 and 7; gives:

10,M] [N,0]
Rygratu(wp, wi, 7) = Ppq Ptu
T g wr — (BRI = B 4i0% w; — (B — E) 407
(G (1) = pyy G100 () BB )

The poles of this Green’s function (in both wy and w;) are seen to be given by the energy
differences between the excited states and the ground state of the system, and the residues

of the double poles are

tu

P (GEIN () — Sy GO ()BT O, (8)

Hence one can determine the particle component of the natural inelastic Green’s function
from the residues of the higher elastic Green’s function. In order to actually obtain the
inelastic Green’s function, one has to eliminate the generalized densities pg)q’M] and pg’o} in
(8). In section IIB3, we will demonstrate how this can be done by studying the structure
of the perturbatively obtained expressions and identifying the contributions of the different
terms. Alternatively, one can try to obtain these generalized densities from a different source,
e. g. from the residues of the polarization propagator [27, 28|, and then simply divide them
out.

A look at eq.(8) shows that one needs to know the elastic Green’s function in order to

obtain GFM:Nl(¢ #'). Tt is possible to avoid this problem by defining R alternatively in the

following way:

Zqurstu(tf Lt t ) (9)
= — < 0T [el(tp)ey(tp)er(t)el ()l (t:)eu(t)] [0 >
+<OW¢:Wqﬁﬂq)cWﬂm><MQ()Jmm>

+<0|T

[
|

(t
(
er(t)el(#) el (ti)eu(t:)] 10 >< 0lch (1) eq(4)]0 >
—<Ok@ﬂ@@ﬁ®><MT[()AUMO><quﬁJMM>,
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i. e. one subtracts less terms than in the original definition. The result for the spectral
decomposition is then simply:

n N0

p[O M]G+ MN}(t t')p[ ]

R rstu\W 7wi7t7t, - - .
st (W ) M%:#O (@7 — (BT — E0) 4 i0%) (w; — (BN — EO) + 0%)

(10)

To evaluate this interrelation, it is now necessary to include the third type of disjoint dia-
grams shown in Fig. 1. The number of diagrams one has to consider is already quite high
even without these disjoint diagrams, and experience will show which definition of R is more
useful. Of course, one could simply take the expressions for the elastic Green’s function from
the literature.

Using the same mathematical steps to evaluate RU!) as used above for RY), one obtains
for this component:

iRpgrana (T, 01, ) =+ 30 plMlpp e Py g
M=#£0,N#£0

(< Mlel(#)e ()N > =dun < 0l (#)en(t)[0 >)

_y(EIMI_Elo] J(EIN]_ glolyy
o {(EM—EL)t +i(BNI-El)

Here, not the natural inelastic Green’s function, but rather the hole component of the
scattering motivated inelastic Green’s function appears. This relation gives after Fourier

transformation (note that here the time variables are now subject to the constraints 7y > —7,

T, > —T):
[0,M] p—i(wy—(BM—EO))r [N —i(w;— (BN El))r
R}(J;I“)stu(wf L, Wi, T) = + Z Prq Ptu |
M#0,N#0 Y (EM] — EO) 4+ 40t w; — (EWN] — EO]) 4 0+
(6PN ) — By G O e E-E Y ()

The exponential functions appearing here drop out when one calculates the residues in order
to obtain G2MN from R(qrstu(wf, Wi, T).

For the third component, one finds:

RS (rr b m) = 4 30 pl MOl i

M#0,N#£0
(< Mlex(®)el(t)IN > =dun < Olen(t)el ()]0 >)

_{(EMI_E0lyy (BN Elo]
o {(BM=EPhY 4i(BIN—E )t7



which can be rewritten using the particle component of the ionization-motivated inelastic

Green’s function. This yields:

(0.M] —i(wi +(EM-EO)7 N0 il (BN - BO)r
Pq

RUIN (wrwiT) = — Pru €
parstu\ W s Wi, T M Ao Wit (EM] — Bl — 0t wy + (BN — E) — 40+
(GEI(7) = BN GO ()t E ). (12

Again, the exponential functions appearing here drop out when expressing the inelastic
Green’s function by RUD.

Finally, for the fourth component one arrives at

IV (BN _EO)- . i(EIM g0,
ZR]()qrs)tu(Tfa t; t,> Ti) = + Z p[ },01[,];[ 0l gi(B E™) fe (£ ET)
M=#£0,N£0
(< Ml (t)er ()N > =dprn < 0l (#)en(t)[0 >)
6—2'(E[M]—E[O])t’e-i-z‘(E[N]_E[O])t

)

for which now again the natural Green’s function can be used, here its hole component (which

is the same as the hole component of the ionization-motivated inelastic Green’s function),

yielding
[0,M] [N,0]
Ppq
RUY) Wi, T) = — Ptu
pqrstu(wf W T) M#OZJV?QO w; + (E[M] _ E[O]) — 0+ wy + (E[N} E’[O]) — 30+
(G (7) — Gy G0 ()t B E O (13)

In summary, the first and the fourth time ordered components of the elastic quantity
R determine completely the natural inelastic Green’s function. Analogously, the first and
the second components provide us with the scattering-motivated inelastic Green’s function,
and the third and the fourth components give the ionization-motivated inelastic Green’s
function.

For brevity, we now introduce the following notation for residues:

Resg z f(x) = lim (z — zo) f(x)

r—x0
Then one can write explicitly:

S —iT [M] _ glo] N,O
P (GEMNI (1) — Gy GO (e EHIZERD ) O (14)

_ () (1
- R‘eswf,E[M]—E[O] Reswi,E[N]—E[O] (qurstu(wf> Wi, 7—) + qurstu(wfa Wi, 7—)

10



i —ir(EIM]_ g0l
P (G (7) — 5y GO () BB v (15)

pq

o (IIT) Iv)
- _R‘eswf,—E[N]—l—E[O] Reswi,—E[M]—l—E[O] (qurstu(wfv Wi, T ) + qurstu(wfu Wi, T) :

In other words, one can obtain both components of the scattering-motivated inelastic
Green’s functions together from a single expression, and the same holds true also for the
ionization-motivated inelastic Green’s function. In contrast, one has to combine different

formulas if one wants to obtain the two components of the natural inelastic Green’s function:

A (G r) = By GHO e B2 5 19

= Res Su, EIMI goRes,, piv_ E[O]R qrstu(wfuwlu7—>

0.M] ( y—n _ i (BIM]_El0]
pi ™ (G MY (7) = Ga GO0 () EHIEED ) [0 (17)
= —Res,,, _gmypoRes,, g, po R;{I‘fstu(wf,wgﬁ).

Finally, let us remark than one can use the time differences 74 = t; — ' and 7; = ¢ —¢; as
an alternative choice to 74 and 7; used above. This leads to similar interrelations between

the inelastic propagator we are looking for and the elastic quantity R:

i —ir(EM] _glo] N,0
PL(Z{M} (GTW’N}(T) — Oy NGO ()BT -E )) pl[tu } (18)

= Res W BV ploRes,, ! EINI_ g0 (R;{]lsm(wf,w T) +qumm(wf,wl’-,7))

0,M s —ir(EM]_Elo]
Pl (GENI(7) — 8N GO0 (e~ EMIZERD ) plio) (19)
R (IIT) ’
= —hes ’, EINI4El0] Res ! —EM 4 El0] (qurstu(wfvw T) + R qrstu(wfvwiv T))

for the scattering- and ionization-motivated inelastic Green’s function, and

0,M n —ir(EM)_El0)
(G ) by G 7 E -2 il 20)
= —Resy gy paRes,; g po Rz(,zgtu(wf,wgﬁ)

n _ _ir(EM]_glo] N,0
P (GLMINY () — Gan G100 (e ERD) g (21)

rs

/
= Res /  EIM] E[O]RGS /EN] E[O]R qrstu(wf,wi,T)

for the natural inelastic Green’s function.
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It is also worth pointing out that by making use of the fact that the residues of the

+
pqtu

polarization propagator II7 ., [27, 28] are given by

M,0
PO o)

one can write down the following explicit expression for the inelastic propagator in the

special case N = M:

()
Reswf,E[M]—E[O] Reswi,E[M]—E[O] qurstu(wfa Wi, 7—)

G‘i‘n[MvM} T) =
rs ( ) RGSME[M] —El0] H;qtu (w)

+ GO0 ()i EM B (22)

Analagous relations hold for the other components and other possible definitions of the

inelastic propagator.

2. Diagrammatic representation

In order to evaluate the Green’s functions, it is convenient to use the concept of Feynman
diagrams and rules. They can be found in standard textbooks on the quantum mechanics
of many-particle systems, e.g. [28]. We present them here for the special case of our higher
elastic Green’s function R and employ them in the next subsection to obtain diagrams for

the inelastic propagators. Thereby we use the Hamiltonian

1
H = Z epc;cp + Z quc;cq ~3 Z VabchLCZCch (23)
P pq

abed

and the Hartree-Fock one-particle interaction

Wpe = — Z Vonlgn)n, (24)

with the one-particle (orbital) energies €, and the occupation numbers n,. The quantities

Vabea =< ¢a(1)0(2)|V (1, 2)|¢c(1)¢a(2) >

denote the matrix elements of the two-particle interaction with respect to the one-particle

states |¢, >, and the abbreviation

Vab[cd} = Vabed — Vavde = Vaved — Vbacd = ‘/[ab]cd
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>\/\/\< = _ivabcd
t.p c d

X = _iVab[cd]

c d

FIG. 2: Feynman rules for the elements of the diagrams

is used for the antisymmetrized matrix elements.

The rules for the Feynman diagrams in order n are:

(F1) Draw all topologically distinct connected diagrams with n interaction (wavy) lines
and 2n+3 directed free Green’s function (solid) lines, where one solid line starts at time ¢,
one ends at time ¢, and at times ¢; and ¢y, both one line starts and one ends.

(F2) Skip all disjoint graphs, i.e., graphs of the structure shown in Fig. 1. Such terms
are exactly canceled by the additional terms in the definition of R.

(F3) Label the graphs with one-particle indices and time arguments according to Fig. 2.
This figure also defines the graphical symbols. The free Green’s function appearing in the

rule for the fermion lines is given by:
iG) (1) = e " (0t — ') — (' — 1)) (25)

with 7, = 1 — n,. Sum over all internal indices and integrate over all internal times.

(F4) Multiply by a sign factor (—1)f, where L is the number of closed (fermion) loops
and by an additional factor ¢ stemming from the definition of R. Each Green’s function line
contributes a factor +i, each vertex a factor —i. Hence when all ¢-factors for a nth order

diagram are collected, one obtains the overall factor

There is also an additional sign factor arising from the way in which the external times ¢y,

t, t' and t; are connected to each other by fermion lines. The sign is +1 for the connections
o lptoty, t;tot;, ttot

o lrtot, t;tot’, tytot,

13



o trtot' t;tot, tytot,
and —1 for the remaining possible connections
o lptot;, tytot;, ttot
o lrtot,tytot, t; tot,
o titot, t;tot', ty toty

Employing the Abrikosov notation, i.e., replacing the wavy interaction lines by interac-
tion points representing the antisymmetrized matrix elements V.4, reduces the number of
diagrams considerably, although the overall sign is not uniquely determined in this notation.

(F5) The correct sign of the graph follows from the comparison with the sign of one
Feynman graph which is contained in the Abrikosov graph.

(F6) As an additional rule for Abrikosov graphs, one has to multiply each graph by 277,
where P is the number of permutations of two G° lines leaving the graph topologically
unchanged.

The evaluation of an nth order Feynman diagram X (t¢,¢,t',t;) requires the performance
of n time integrations over the internal time indices t1, ..., t,. The result of these integrations
and of the additional Fourier transformations

X(wp,wj,w) = /O:O eI T T X (14, 1y, T)dTpdTidT
can be read directly off the so-called Goldstone diagrams. The sum of the contributions
from all diagrams gives then R, stu(wy,wi,w). From this, one can obtain G(w) and then
G(7) by a reverse Fourier transformation. It would be desirable to obtain Ryg.stu(wy, wi, T)
and thereby G(7) directly from such a diagrammatic expansion, but unfortunately this does
not seem to be easily possible.

The rules to draw and evaluate the Goldstone diagrams are as follows:

(G1) For a given nth order Feynman diagram, draw all (n + 4)! time-ordered diagrams
which result from permuting the ordering of the times ty,¢,t',¢;,t1,...,t,. We further in-
troduce three auxiliary lines connecting the pairs of external times (ts,t), (¢,t'), and (¢'.t;),
going from the first to the second time in all three cases.

(G2) For the Goldstone diagrams, the direction of the lines has a meaning: Upwards-

and downwards-directed lines represent particles (unoccupied one-particle states) and holes

14



(occupied one-particle states), respectively. Label all such lines with one-particle indices
respecting this distinction (n or ).
(G3) Each cut (a horizontal line) between two successive vertices (including the external

vertices) introduces a denominator of the type
ojwrtoiwitowte e+ ... —6—¢€ —...+i0".

Here each cut line gives a contribution: hole-lines k, [, . .. contribute the one-particle energies
€k, €1, - - -; particle lines ¢, 7,... contribute the negative energies —¢;, —¢;,.... The energy
variables wy, w; and w are introduced if the corresponding auxiliary line is cut, and have
positive (0; = +1, 0; = +1, or 0 = +1, respectively) or negative signs (6 = —1, 0; = —1, or
o = —1, respectively), according to the downward or upward direction of the corresponding
auxiliary line. If none of the auxiliary lines is cut, then oy = 0; = 0 = 0, and a constant
denominator results, in which the imaginary infinitesimal 10" can be omitted.

(G4) Each hole line introduces the factor (-1). Thus, multiply by a sign factor (—1)L+M,
where L is the number of closed loops and M is the number of hole lines. Since each
vertex gives a factor —i and each of the n + 3 cuts (between the n 4 4 vertices) gives a
factor +i, one obtains together with the factor ¢ from the definition of R the overall factor
i(—0)" ()" = +1.

Additionally one has to multiply with a sign factor depending on the way in which the
external times are connected (see rule F4).

One may also employ the Abrikosov notation for the Goldstone diagrams; the correspond-
ing rules (G5) and (G6) are analogous to (F5) and (F6).

The (n + 4)! Goldstone diagrams can be divided into 24 classes of diagrams according
to the 24 possible time orderings of ¢y, ¢, ¢ and ¢; for the external vertices. The diagrams
contribute then only to the respective parts of R. The number of Feynman diagrams in

order n (Abrikosov notation) is:

e n=2~0:2
en—=126
e n=2 36

For a given time ordering of the external vertices in order n, one has to consider (n + 4)!/4!

(=1, 5, 30, ...) different Goldstone diagrams for every Feynman diagram. Hence the number
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FIG. 3: Goldstone diagrams for the first component R) of the four-times Green’s function for a

closed-shell molecule in zeroth order

of Goldstone diagrams for a given time ordering of the external vertices is in order n (if one

uses the Abrikosov notation):
e n=0: 2 (Fig. 3)
e n=1: 30 (Fig. 4)
e n = 2: 1080

For the second order, the 36 Feynman diagrams are shown in Fig. 5. In all Feynman
diagrams, the dotted lines are inserted to denote the four times t;, ¢, ¢/, and t;. The

auxiliary lines mentioned in rule (G1) are not shown explicitly.

3. FEwvaluation of the diagrams up to first order

In leading order, the relation between the first component of the four-times Green’s
function and the particle component of the inelastic propagator is simply
7 .01(®)
RYO (o wsw) = Py P’
parstu\¥ fr Wi, - wy — (E[qﬁ] _ E[o})(o) + 430+ w; — (E[tﬁ} _ E[O})(O) + 407+

. (G;n[qﬁ,tﬂ}(o) (W) = 6446, G100 (w — (Bl — E[O])(O))) . (26)

where we wrote gp for a 1plh excitation (particle state ¢ and hole state p). On the other
hand, the evaluation of the two diagrams of Fig. 3 yields

NpNgM Ty
(wf — €, + €, +107)(w; — € + €, + i0F)
5pr5qt63u 6q36pu6rt

_ 27
w—¢6+10"r w—e—¢ +e, +10T (27)

RO

pqrstu (wfu Wi, w) -

Using additionally that
67“8771‘5

w— €5+ 101’

GO w) =
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FIG. 4: Goldstone diagrams for the first component R() of the four-times Green’s function for a

closed-shell molecule in first order

we readily find

,0][[2]’ qp](0)

4,0](0
A2

(B! - E[m)(“)

G;;" [gp,tu](0) (w)

NpTy (28)

€q — €p (30)
5pr5qt(ssu 5qs(5pu5rt

w—¢€+1i10t w—e —€ + ¢ +10T

_ 6qt6pu6rsﬁs (31>

w+ € — € — € +i0F’

in agreement with the results which one can easily obtain by a straightforward perturbative

evaluation.

In contrast to the zeroth order, where only one state |[pg > contributes to the sums, all
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FIG. 5: Feynman diagrams for the four-times Green’s function for a closed-shell molecule in second

order

1p — 1h excitations, and additionally also 2p — 2h excitations contribute in firsrt order. For
analyzing all the different contributions arising from the 30 diagrams shown in Fig. 4, it is
convenient to introduce vectors T}, containing the generalized densities ,OEJ’O] for fixed t,u

and matrices G,s(w) for the propagators
GFPMNY() — §pn GO0 (w — (EM — E[O]))

for fized r,s (the vector and matrix indices run over the excited states). Further, we introduce
the diagonal matrices E and V, where the diagonal elements of E are the leading order
contributions to the energy differences EIM — El% and V contains the higher orders. Then

one can write:

1 1
RY i =T G,(w)———=Th. 32
pqrstu(wf7 w 7("}) quf _E_V (w) ] i ( )
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T[lplh] G[lplh,lplh] G[lplh,2p2h]

r(2p2h)] @G [2p2h,1p1h] | @ [2p2k,2p20)]

FIG. 6: Block structure of the vectors T and the matrices G

Note that this expression for R) holds in general, not just in perturbation theory, and
thus could serve as a starting point for approximation schemes like e.g. the Algebraic
Diagrammatic Construction scheme [1, 27, 30].

The vectors T and the matrices G, E and V can be subdivided into blocks by considering
the different possible classes of excitations separately (see Fig. 6). In the following, we will
label these blocks with the superscripts 1, 2, etc., enclosed in square brackets, i. e. TEJ refers
to the generalized densities between 1plh states and the ground state. This enables us to

write the decomposition of R in first order in the following way:

() J——r 1 1L,1](0 1 [1](0)
qurstu(wf7wiaw) - TEHJ( )TWGLS I )(w)m’rtu (33)
ppmot_ L graey,y 1 gl

ap Wf _ Em rSs w; — Em tu

1 1
_ - lyoe - plI®)
qp (.df o E[Q} Grs (w) w; — Em Ttu

1 1
- Ao,y @)
wowp—EN T () w; — El2 Tiu

1 1
_ - oy - p[0)
qp wf o Em Grs ((.d) w; — Em Ttu

1 0
1](1 1,1](0 (1](0)
[1}‘7[ 1(1) [I]G[S I( )(( ’)%T

1 1 1
Hor__ - [1,100) (1](1) (1](0)
+T,, o —ED G (w) o E0 A% o ET T, .

Evaluating the diagrams in Fig. 4, one can determine their contributions to each of the
seven terms above. The explicit results can be found in appendix1. It turns out that the
first term gets contributions from the diagrams 3c, 3d, 4c¢, 4d, the second from 5b, 5d, 6b, 6d,
the third from 1¢, 1d, 2¢, 2d, 5¢, 5d, 6¢, 6d, the fourth from 1b — 4b, 1le — 4e, the fifth from
la — 6a, 1b — 6b, 1¢ — 6¢, the sixth from 3¢, 4¢, and the seventh from the diagrams 5b, 6b.

We are interested here only in the fifth term, which contains the first order contribution
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to the inelastic propagator between 1p — 1h states. The propagator for the ground state has
no contribution in first order, but the energy difference occuring in its argument (compare
equation (26)) has a first order contribution, and hence this term has also to be taken into

account. We then finally obtain:

Ty
— e, — 0+
w+ €, — € — € +10

+n[gpta)(l) _
qu [gptul(l) _

- nqurstépu + nsvrups5qt + nsvqus5rt

nrnsvuqstépr (1 - 5qt55u)
w— € +1i0"

_nsvrqptésu - ﬁsvurptéqs (1 - 5pu5rt) ] +
N
W — €5 — € + €, + 10T

nrvqrstépu - nrvrups(sqt - nrvurpt(sqs

nrnsvrqpt(ssu (1 - 6pr5qt)
w — € + 10T
A _‘/qr[st} 5pu + ‘/ru[ps}é‘qt + qu[ps}grt + Vur[pt} 5(15
" wte— e — 6 +i01)(w— €5 — € + €, +i07)

ﬁrns‘/rq[pt](ssu

(wW+e —€— 6 +107)(w—¢ +i0T)

+ nrﬁsvuq[st]5pr

(w—e€+i0%)(w—€; — e+ €, +i07)

5qt5pu5rsﬁs

+nrvuqst6pr + ﬁrvqusgrt (1 - 5pu5qs) :| -

W+ €p — € — € — Vpgppg + 107

Here the abbreviation

Va c
Vabed = bled (35)

€+ € — €. — €4

was introduced.

The arguments used above can be generalized to higher orders. It turns out that a diagram
of order n which has an internal vertex at a time before ¢; or after ¢; can not contribute to
G Hence if one is only interested in the inelastic propagators between 1p — 1h states,
one does not need to evaluate such diagrams. This leads to a considerable reduction in the
number of time orderings: only (n+2)!/2 (=1, 3, 12, ...) Goldstone diagrams are necessary
to evaluate every Feynman diagram and any given time ordering of the external vertices, i.e.
2 diagrams in zeroth order, 18 in first order, and 432 in second order. In contrast, if one is
also interested in propagators between higher excited states, all (n + 4)!/4! time orderings
have to be considered.

For determining GVl and the other inelastic Green’s functions, one can construct
the diagrams for RYD to RYY) in an analogous way. The evaluation of the diagrams is very

similar; one can express RUD to RIY) using a matrix notation like that used for RY) in (32).
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The only difference is that one has to pay special attention to the additional phase factors
appearing in R0 (wy, w;, 7) and RUID (wy, w;, 7) [see eqs.(11) and (12)]. These lead to a shift
in the variable w of the Fourier-transformed quantities R (wy, w;,w) and RU (wy, w;, w)
which are obtained by evaluating the diagrams. A closer analyis reveals that one has to

define the matrix G,4(w) in (32) differently. The matrices now have the elements

rs

—(SMNGT_S[O’O} (w — Wy — W + (E[N] - E[O]))

(—sIM.N] (w — Wy —wi (E[M} _ E[O}) + (E[N} _ E[Ol))

and
G;i[M,N} (w — W — wy — (E[M} _ E[o}) _ (E[N} B E[O}))
—0unG 0 (w = wp —w; — (BN = BO))

respectively. In RYY), no additional phase factors appear, so that the matrix there has

simply the elements

rs

G (w) — oy NG (w + (BM) — E))

So from the viewpoint of the actual diagrammatic evaluation, the natural inelastic Green’s

function indeed seems to be more "natural”.

C. Closed-shell anion
1. Ezxpressing the inelastic propagator by elastic quantities

Here we use the four-point, four-times Green’s function which is defined with respect to

the ground state |0~ > of the (closed-shell) anion:

iRpgra(ty 1 1:) = — < 07|T [c(tp)eg(t)el(t)eslts)] |07 > (36)
+ < 07| [ef(tp)es(t)] 07 >< 07|T ey (t)c ()] 0~ > .

p

The extra factor consisting of a product of two-times Green’s function is added to eliminate
the disjoint diagrams in the diagrammatic expansion (see Fig. 7).
This four-times Green’s function is essentially identical to the particle-hole response func-

tion [29]. A well-known special case of that function, with only two different time arguments
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FIG. 7: Disjoint diagrams which do not contribute to the four-times Green’s function for a closed-

shell anion

instead of the four in the general form, is the polarization propagator. Since that propa-
gator and the Green’s function we discuss here differ in the number of their different time
arguments only, the Feynman diagrams for both are essentially identical, but the Goldstone
diagrams are different.

Again, there are 24 different time orderings possible here, which all depend only on the

three time differences 7, =ty — ¢, 7 =t —t' and 7, = t' — ¢;; hence we can write:

quTs(tﬁ l tlv ti) - ‘9(Tf)‘9(7—>9(7—i)R(I) (Tfa T, Ti)

pgrs

0(71)0(—T)0(7:) Ry (75, 7. 73)

+ pqrs
+

The other 22 time orderings not explicitly shown give contributions which are not of interest
here.

The steps we use here to establish the connections with the various inelastic Green’s
functions are very similar to those in the previous section. First, we insert complete sets of
energy eigenstates |V > (here not of the anion itself, but of the neutral open-shell molecule
of interest), and subsequently we use the time dependence of the destruction and creation
operators to obtain

R;I) (Tf,t,t’,n) _ Z x}[}M]Tx[SN}e—i(E[M]—E[O_])Tfe—z’(E[N]—E[O_])Ti

qrs
M,N
_{EMI_EI07 ) (EIMI_go ]y
o iBM—BOT ) Li(BM—EOT )

(< Mley(®)cE ()N > —darw < 07|, ()l ()07 >),

where EL7] denotes the ground state energy of the closed-shell anion, E™! the possible

energies of the neutral open-shell molecule, and the transition amplitudes

N =< Nl¢, |0~ > (37)
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were introduced. By using a slightly different definition for the phase factor for the natural

Green’s function,
(I)+n[M’N} (t, t/) _ _(E[M} _ E[Of])t + (E'[N] _ E[Oi])t, (38)

i. .e. replacing the energy differences to the ground state of the neutral molecule with energy
differences to the ground state of the anion, we can write the first time ordering RY) as
I M1, [N], —i(EIMI_EO" Nz, _j(EINI_E0™ g
ngq)m('rf, T, T;) = — Z QEI[, Hx[s Je—i )7t o= ) (39)
M,N

. <G;—TY’L[M,N] (T) — 5MNG(‘;‘T[O,0}(T>€_Z'(E[M]_E[o—])7_)> ’

where G*0707] is the propagator for the ground state of the anion. Note that due to
the changed phase factor, the poles of the particle component of the inelastic propagator
GHMNT are no longer the electron attachment energies of the neutral molecule, but instead
excitation energies of the anion.

Fourier transforming of RY) with respect to 77 and 7; gives now:

" x}[?MH 2N
R y Wiy = - - . - ;
pqrs(wf wj, T) 1\;\/ wi — (EM — BT 440+ w; — (BN — EO7T) 40+
: (G;;"[M’M (1) = SunG L0 (r)e P i [O])T)) : (40)

The poles of this Green’s function (in both w; and w;) are given by the energy differences
of the excited states of the neutral open-shell molecule to the ground state of the anion

(i. e. by the ionization energies of the anion), and the residues of the double poles are
! (GJT"WM (1) — aMNG;JO‘O‘}<T>e—“E”“-E””T)) M, (41)

Again, as in the preceding section one determines the particle component of the natural
Green’s function for inelastic scattering from the residues of a higher Green’s function.
Since here the sums over M and N include the ground state of the neutral molecule, it is
possible in principle to determine also the elastic propagator for the (open-shell!) neutral
molecule. Actually, what one obtains for M = N = 0 is the elastic propagator times the
phase factor

6_(E[0]_E[07])7—

Y

arising from the slightly different phase definition introduced above in eq.(38).
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Similarly, one obtains the second part of R, which corresponds to the second time order-
ing. As found for the closed-shell molecule in section IIB, it turns out that RUD gives the
hole component of the scattering-motivated inelastic Green’s function (provided that in the
phase factor @M N the energy differences to the ground state of the anion are used):

g[Mlteilor=(BM-BO D)7 IN] i (BB )r

RUD) L) =
pars(Wr, Wi 1, 1) %wa_(E[M]—E[O‘])—i-z'O*wi—(E[N}—E[O_})+i0+

: (G;ﬁW’N} (1) — Sun G0 0, t’)e—“E””—E”‘”ﬂ) L (42)

Because of the phase convention used, the poles of the particle component of the inelastic
propagator GT*IMN are now not the ionization energies of the neutral molecule, but the
double ionization energies of the anion.

We see that RO and RUD taken together determine the scattering-motivated inelastic
Green’s function, just as we have found in the preceding section. But, in contrast to the
situation there, the hole component of the natural inelastic Green’s function (and therefore
also the ionization-motivated Green’s function) can not be obtained here from the time-
orderings three and four, since these time-orderings involve intermediate states of the dianion
rather than those of the neutral molecule.

Nevertheless, one can obtain the ionization-motivated inelastic Green’s function if one
uses alternatively the time differences 7p = 1y — ¢’ and 77 = ¢ — {; instead of 7y and 7;.
Then, RY) gives the particle component of the ionization-motivated Green’s function and
RUD gives the hole component of the natural Green’s function—and hence R and RU!)

determine the whole ionization-motivated inelastic Green’s function.

2. FEvaluation by diagrams

The Feynman rules for the four-times Green’s function are very similar to those discussed
in some detail for the closed-shell molecule (see section I1B). The differences are: one has
now only 2n+2 instead of 2n+3 directed free Green’s function lines in rule (F1) (at the time
z;, there is now only a line which ends there, and at time ¢;, only a line which starts there),
resulting in an overall factor of i"~! instead of i" in rule (F4). However, the factor +1 for
the Goldstone diagrams in rule (G4) stays the same, since one still has the same number of

vertices and hence the same number of cuts. The additional sign factor in rules (F4) and
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FIG. 8: Goldstone diagram for the first component R of the four-times Green’s function for a

closed-shell anion in zeroth order

(G4) arising from the way in which the external times t¢, ¢, ¢’ and ¢; are connected is here
—1if t; is connected to ¢; and 41 otherwise.
The number of Feynman diagrams is considerably lower here: In order n (Abrikosov

notation), one has now only

e n—=20:1
en—=1:1
en—=25

The Feynman diagrams arising here are similar to the ones for the polarization propagator
(which are shown up to second order e. g. in [27]). One crucial difference is that here, for a
given time ordering of the external vertices in order n one has to consider (n+4)!/4! different
Goldstone diagrams for every Feynman diagram. The number of Goldstone diagrams for a

given time ordering of the external vertices in order n (Abrikosov notation) is then:
e n=0:1 (Fig. 8)
e n=1:5(Fig. 9)
e n=2:150

For the second order, the five Feynman diagrams are shown in Fig. 10.

In leading order, the single diagram of Fig. 8 can be easily evaluated to give

RO _ "0 1 Ms0rs (43)
PTS w6+ 10t w + 10T w + €5 + 90T

Taking also the elastic propagator GT° 971 for the ground state of the anion into account,

one obtains
xf](o) = n, (44)
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FIG. 9: Goldstone diagrams for the first component R) of the four-times Green’s function for a

closed-shell anion in first order

FIG. 10: Feynman diagrams for the four-times Green’s function for a closed-shell anion in second

order

(Bt - E[O*])(O) R (45)
- OO -0

G+n£p,s](0) _ PgTTs i rYqr 46

r () w40t Pw— (e —€) + 0T’ (46)

again in agreement with the results one can obtain by a direct perturbative evaluation. We
wrote here p for a hole state of the anion.

To evaluate the first order, one can introduce vectors X, containing the transition am-
plitudes < N|cs|0~ > for fized s, and matrices G, E and V, analogously to the case of the
closed-shell molecule (compare section IIB). These matrices can be subdivided into blocks
again, this time for the 1h, 2h — 1p, etc. excitations. We denote them again with superscripts

1, 2, etc. in square brackets. This enables us to write:

R (o) = XY QRO ) e XU (a7
+XL”(°”ﬁGL&”(O)(w)ﬁXE“”
+XL2K1)TW_E[2] W) _1EMXL”(°)
+X][gu<o>+wf —1Em [1.2)0) (@) —1Em X210
+X][01}(0)wa _1Em 10 ) _1Em XU0)



1

1 1
+XL1}<0>TWVM<1>m@%ﬂ(o) (w)mxg}(m
1 1 1
Hoytr__ -  =[1L1(0) [1)(1) [1](0)
SRS ey A A b - AP 0 R

i. e. there are seven terms contributing to RY) in first order. Analysing the diagrams of
Fig. 9, it turns out that there are no contributions to the first two and the last two terms
(i. e. the transition amplitudes to the 1h excitations and the energies of these excitations
receive no first order contribution in perturbation theory). The third term gets contributions
from the third and fourth diagram, the fourth term from the second and fifth diagram, and
the fifth from the first three diagrams. The explicit results are listed in appendix 2.

We are interested here only in the fifth term, since only this term contains the first order
contribution to the inelastic Green’s function. Taking the results from all three relevant dia-
grams together and considering that the propagator for the ground state has no contribution
in first order, we finally obtain:

Ng Ny

Gnlp.3)(1) —
r — (e —€) +i0T  w— (¢ —€) +i0F

(48)

= Ugspr

One achieves a significant reduction in the necessary number of diagrams if one is only
interested in the propagators between 1h states. In this case, only (n+ 2)!/2 time orderings
have to be considered. This leads per Feynman diagram to 1 Goldstone diagram in zeroth
order, 3 in first order, and to only 60 in second order. To evaluate these diagrams is a very
feasible task. Even the third order, which involves 23 Feynman diagrams (which are very
similar to the 23 Feynman diagrams for the polarization propagator in third order [30]) and

60 time orderings, and hence 1380 vGoldstone diagrams, could be viable.

D. Closed-shell cation
1. FEaxpressing the inelastic propagator by elastic quantities

This case is very similar to the case of the closed-shell anion, and we can keep the discussion

short. We have to use the following four-point, four-times Green’s function here:

T

iRpgrs(ty, £, 15) = — < OF|T [ey(t)eq(B)ch ()el ()] 107 > (49)
+ < 07T [ept)el(t:)] 07 >< 0F|T ey (1)l ()] 0F > .
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FIG. 11: Disjoint diagrams which do not contribute to the four-times Green’s function for a closed-

shell cation

|0F > denotes the ground state of the (closed-shell) cation, the remaining notation is identical
to that in the previous sections. The disjoint diagrams which are subtracted here are shown
in Fig. 11.

In complete analogy to the preceding sections, we obtain
y Mt [N]

R(I) Wi, _ p ys
pars(@WFs Wi, T) MX;V wp — (EM — EOT1) 400+ w; — (ENT — EOFT) 440+

. +
. (G;FT[M,N] (1) — 5MNG;T[0+,0+](T)e_z(E[Ml_E[o J)r)) (50)
and
(Mt il —(EM—EOT)r IN]—i(ws— (BN B T))r
Righ(wpwi,m) = 3 y,, [M] 0F1) 50+ " (V] 071} 40+
irn wr — (EM— EOY) +40% w; — (EW — EI07) +40
. +
. <Gq—T[M,N] () — 5MNG;T[0+,0+](T)e—z(E[M]_E[O ])7)) 7 (51)

for the Fourier transforms of the first and second time orderings. E"! denotes the ground
state energy of the closed-shell cation, E™! the possible energies of the neutral open-shell
molecule, G001 is the propagator for the ground state of the cation, and the transition
amplitudes are

yNM =< N|ctjot > . (52)

The phase factors one has to use here include the energy differences to the ground state of
the cation. All the remarks of the previous section with respect to the changed meanings of
the poles apply here also.

Again, the two time orderings RY) and RUY?) taken together give the scattering-motivated
inelastic Green’s function. And again, one can also obtain the elastic Green’s function for
the ground state of the neutral, open-shell molecule (times a phase factor), just as in the
investigation of the closed-shell anion in section II C. Similarly, the hole component of the
natural inelastic Green’s function and the ionization-motivated Green’s function can not

be obtained from the time-orderings R and RUY), since these time-orderings involve
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FIG. 12: Goldstone diagram for the first component R of the four-times Green’s function for a

closed-shell cation in zeroth order

FIG. 13: Goldstone diagrams for the first component R() of the four-times Green’s function for a

closed-shell cation in first order

intermediate states of the dication instead of those of the neutral molecule. This can be
remedied by using alternatively the time differences 7; =ty —¢' and 7/ =t — ¢; in RY and

RUYD " as done in the preceding section.

2. FEwvaluation by diagrams

The Feynman rules to evaluate the elastic four-times Green’s function are almost the
same as those discussed for the closed-shell anion case (see section IIC): in rule (F1), there
is now a line starting at time ¢; and a line ending at ¢;, and the additional sign factor in rules
(F4) and (G4) arising from the way in which the external times are connected is exactly
the other way around, i.e. +1 if ¢y and ¢; are connected and —1 otherwise. The number
of Feynman diagrams in nth order is identical to that in the preceding section. Also the
appearance of these diagrams is very similar; in many of them, only the direction of two
lines has to be changed. The Goldstone diagrams of zeroth and first order are shown in
Figs. 12 and 13, and the Feynman diagrams of second order are shown in Fig. 14.

By evaluating the diagrams in the same way as for the anion, one obtains here for the

particle component of the natural inelastic Green’s function for the transitions between the
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FIG. 14: Feynman diagrams for the four-times Green’s function for a closed-shell cation in second

order

1p states |[p > and |s > up to first order:

Oprgs 5 ny
w—¢— € +i0T  PPw— (6 + €) +i0t
n Ny
+FVgprs 4 — —|. 53
w w—e€,—€+i0"  w—¢€ —e+i0" (53)

G$n@,s](0,1) (w) _

It is obvious by now that starting with a suitable elastic higher Green’s function of
a closed-shell anion or cation, the determination of the inelastic Green’s function for the
molecule is much easier than in the case where the neutral molecule itself is closed-shell. A
slight drawback of this method is that all excited states are written with respect to the ion.

In many cases, these states are of interest by themselves, however.

III. CALCULATION OF THE INELASTIC PROPAGATOR VIA THE GENER-
ALIZED ONE-PARTICLE DENSITY

A. Dyson-like equations for the inelastic propagator

The approach outlined in section II for obtaining the inelastic Green’s function is nice
from a mathematical point of view, since it gives the Green’s function directly. Additionally,
it reveals the significance of the scattering-motivated and the ionization-motivated Green’s
function, and could help in the physical interpretation of the three different definitions for
the inelastic Green’s function.

However, this approach looks quite tedious - the number of Goldstone diagrams (and
even of the Feynman diagrams) one has to consider grows very rapidly with the order n,
and already the second order poses a considerable challenge. Hence the derivation of other
methods, which might be more practical, is desirable. We will outline such an alternative

in this section.

30



As has been shown in [21], one can write the following equation of motion for the inelastic

Green'’s function:

[z% - ]G%’N](t, t) = 8(t — )6, 0nn +ZkaG[MN]( t') (54)
+ Zkl Vpn[kl nlk q}(t t)
_G;(I[M,N] (t, 1) (_(E[M} — E) 4+ f+[M7N})
—G;q[M’N] (t, 1) ((E[N] — B 4 f—[M,N])
with
iGEN (1) = 0(t — ') < M|ch(t)er(t)er(t)el ()N > e (55)

—(t' —t) < M|ch(t")el () er(t)er ()| N > M),

As we have seen in the direct approach (sections II C and II D), it is convenient to replace the
ground state energy E” of the neutral molecule with the ground state energy E¥T of the
corresponding ion if one treats the case of a closed-shell anion or cation. In the following, we
will assume for simplicity of notation that E stands for the relevant ground state energy.

It suffices to investigate the equation of motion for the natural inelastic Green’s function
(for which it simplifies considerably, since the factors f* and f~ are zero there), since any

other inelastic Green’s function can be obtained from it by

G;tq[M,N} (7-) = G;tqn[M,N} (7_) eifi[M,N]T

or, for the Fourier transforms,
G;I:q[M,N] (w) _ G;I:qn[M,N} (w + fj:[M,N]) '

For reasons which will soon become clear, it is necessary to treat the equations of motion
for the particle and the hole Component separately (see also [22]). The particle component of

the higher Green’s function M appearing in the equations of motion can be rewritten by

nlk ,q

inserting a complete set of eigenstates and using the usual time dependence of the destruction

and creation operators:
iGring (L 8) = 0t =) 3o P < Pley(t)el ()N > e 00
P

nlk,q
M,P] . n[P,N
P
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If one also wants to express in a similar way the hole component G~ by generalized
densities, one first has to commute the operators ¢! and ¢;. However, this gives a factor d,,

and that yields in the equation of motion a term with

Z ‘/pn [kn]»

which diverges. Hence one has to treat the case n = [ separately. One finally arrives at

iGrapg™ (4, 1) = 3 (=iG" M ) o™ (1= 0) — iGN ()51
P

—H,G]:: IMPL t')énlp,[ﬁ;m) . (57)

Note that the second term on the right hand side does not contribute in the equation of

motion (54), since it leads to a term Vonjnn) = 0 in the sum

> VoG nlkq }(t t).

n,k,l

By introducing the abbreviations
1
A+ [M.F] = ka(SMP + 5 Z ‘/pn[kl}pg\lmp}? (58)
nl

PN 1 N L
Apk[ = Wordpn + 9 Z Vpn[kzl}pil | T 2 Z Vpn[kn]pg;]v]’
n,l;n#k n

we then arrive at the following simplified expressions for the equations of motion for the

particle component

. d n !/
{za — & + (B — E)] } GHMNT (3 ¢ (59)

= §(t — t)p; M +ZZA+MP G 1)

and the hole component

%
dt

= 3(t —t')plMN +ZZAkaNG,;jMP(t t')

pq

_ [ ¢ — (BN — E[O})} } G PN (¢ ¢ (60)

of the natural inelastic propagator, where

PN =< MepelIN > .
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The equation of motion for G now only contains the ”advanced type” quantities G™"

+n[M,N] . M,N]

and p. Note that by treating G, nlk 9

in a way analogous to G, , one can obtain

G+nMN (t, t/) _ Z (pl-i-[M,P] G—i—n[PN](t’t/)(l . 6nl) . iG:L-;[M,N} (t, t/)énl(snk

nlk,q n
P

+P+[M P G+n[PN](t ¢ )5 ) (61)

(again, in the equation of motion the term with d, cancels out), and hence it is also possible
to write an equation of motion for G*™™ which only contains the "retarded type” quantities
Gt and p™. Note that in [22], equations of motions for both components of the inelastic
propagator were already given. But there, the problem of completely separating the two
time-orderings of the propagator in the equations was left open.

Now it is convenient to Fourier transform equations (59) and (60), yielding:
{w _ [ep + (E[M} _ E[O})”G;qn[M,N}( ) = [M N4 ZZA+ [M,P] +n[M N](w)
and

{w — {ep — (E[N] _ E[O])} } G—n[M,N]( /)qp M,N] | ZZAkaN G_"[M p]( )

rq

and to introduce the abbreviations

~ OO
+[M,N] _ pq” M N
Croa W) = T S ET — B0 a0 (62)
- )
) - by

w6 — (BN — EO)] — 0+

G= is not the lowest-order contribution to G* (i. e. the contribution for no interactions
between the electrons). In order to distinguish this propagator from the free one, it is
denoted by a tilde here, contrary to the notation in [21], where a superscript (0) was used.

We arrive now at the following equations:
ZX:@*
ol

k P

1P e _ 4[M,N] A+[M Pl +nPN}
qu ((.d) - ppq +ZZ ( )

p

N

If one introduces super-matrices, it is easy to rewrite the first equation. But for the second

equation, one has to interchange the order of the lower indices for G, G~ and A, i. e. we
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define:

(@) = a

pq

(@) = e

rq

(A7) = g e,

pq ap

Then, the equations for G* and G~ can be written in a short, handy way:

Gt = GTp" + GTATG?H (63)
G =pG +G A G . (64)

We have thus now arrived at Dyson-like equations for both components of the inelastic
propagator. It should be remarked here that it is also possible to derive an equation of
motion for G~ so that the order of the super-matrices in the Dyson-like equation for G~ is
identical to the order in the one for G*. This can be achieved by using

d ,_
_Z_qu[M’N] (tv t,)a

d :
i—G N t) = y7

dt’
which leads to
d

- [M,P] ~—[P,N
i = eq+ B — BN G M ) = 6(8 — 1) pfp ™ + ;%A G M, )
with
_ 1 1
Akq[MJD} = 6MPqu + 5 Z mG nq]pmn - §an nq]pn]\g P}'
mn;n#k

Fourier transforming and using the same super-matrix notation as above in (64) yields then
the desired form
G =G p+G A G.
Finally we want to address the question of invertibility of the individual components of
the inelastic Green’s function. For the particle component, this was already discussed in
[21]; the discussion here can proceed along the same lines. Using the Dyson-like equation

(64), we can give an explicit expression for the hole component of the inelastic propagator:
G =p((G)'-A).

If p were invertible, it would then follow that G~ is. But p is a singular matrix, which can

be seen using the same argument as applied in [21] to pT: insert completeness between the
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two operators in p and note that it then can be written as the matrix product p = afa,
where a has the elements

Qs (qM) =< Sﬂbq‘M > .

Here, the states |sT > are the energy eigenstates of the molecule with one less electron. a is
then a rectangular matrix with rank smaller than the dimension of p. Therefore, the rank
of p is smaller than its dimension, and consequently it is singular.

A crucial point concerning the Dyson-like equations (63) and (64) is that in order to
calculate the inelastic Green’s function, all one needs to know are the energies EM! and the

generalized densities pl[f‘(;[’N I'and p;q[M’N I of the target molecule. Since
pz[ojf\l/[ M+ p;;ﬁ[M’N] = OMNOpg (65)

holds, calculating either p or p* suffices already.

We outline in the next three sections how one can obtain the generalized densities and
the EM! and from them the inelastic propagators. In analogy to the direct approach, the
three cases of a closed-shell neutral molecule and closed-shell ions are separately discussed.
We call the method of calculating the inelastic Green’s function by using the generalized

densities and the Dyson-like equations (63) and (64) the Dyson approach in the following.

B. Closed-shell molecule

1. Connection between the generalized densities and a higher elastic Green’s function

We start from the six-point, three-times Green’s function

Rpgrtu(t t',8") = — < O|T [ef(t)eq(£)ch (') es ()] (#)eu ()] 10 > (66)
+ < O[T e (£)eg(B)ch ()es ()] 10 >< 0fc] (")eu ()]0 >
+ < O[T e (£)eg (B)cl (")eu ()] [0 >< O]c] (#)es(£)]0 >
T

(
(
(
+ < O[T [} (#)ea(#)el (") eu ()] 10 >< 0] ch(t)eg ()]0 >

)

—2 < 0[ch(t)e,(£)]0 >< Olel (#)es(#)]0 >< 0]ef (#")eu ()]0 >,

which is very similar to the one used in the direct approach (compare section 11 B). Essen-

tially, it can be obtained from the latter one by setting the two central time arguments equal

35



and interchanging the corresponding annihilation and creation operators. Also here, the ex-
tra factors which are subtracted and added to the six-operator expectation value eliminate
the disjoint diagrams in the diagrammatic expansion, and the overall sign is chosen to give
a convenient spectral representation.

Due to the reduced number of time arguments, we have here only six different possible
time orderings. All six contributions depend only on the two time differences 7 =t — ¢’ and

7 =t —t", and hence we can write:

qurstu (tv tla t”) = 6(T>8(T,)R;g(723“stu (T T,) + ‘9(7— + T,)e( )R;{I{”stu (T7 T,)
FO(=1)8(T + VR (7, 7') + 0(—7 — 7)) R o (7, ')
FO(T)O(—7 — TV RO (7, 7) + 0(=7)0(—" )RS (7, 7).

Performing the same mathematical steps as in the preceding sections, we arrive at

N,0
qurstu(T 7—) = - Z p[O M]/O[u ] (pyé/[ N O pLOsO])
M#£0,N+£0

_y(EMI_EIOh, _;(gINI_gloly
e iI(F E )7’6 i(E ENr

Fourier transforming with respect to both time differences yields

P (PN — Saanpl”) o

rs

— (EM] — E0) 4+ 40%)(w’ — (BNl — EL1) +40+)

I
R;q)rstu (w7 Ld,) + Z (
M#0,N#0

(67)

The poles of the Green’s function (in both variables) are given by the energy differences

between the excited states and the ground state, and the residues of the double poles yield

the generalized one-particle densities. Analogously to the direct approach, the knowledge of

the one-particle density of the ground state is not necessary if one modifies the definition of

R by subtracting less terms, like in eq.(9). Then, one can obtain the spectral decomposition
[N,0]

(0, M]
Ppo Ptu
R N Pq [M,N] . 68
Pqutu(w7w) M;A%]:V;AO W — (E[M} E0]) + Z()+'0’“3 W' — (EWNT — E0) 440+ (68)

Although this approach is appealing, one would have to include a large number of disjoint
diagrams in the computation.
Using the same mathematical steps on the other five components of R, correspondings

to the other five time orderings, it turns out that they are related to R in a simple way:

1)
R;qrstu( ) quturs (wa w — w,)
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Clearly, it is sufficient to calculate RY)—the other five components contain the same physical

information.

2. Diagrammatic representation

The higher elastic Green’s function can be calculated with the help of Feynman diagrams
and rules. The rules here are almost identical to the ones presented in section II B. The main
difference lies in rule (F1): we have now at all three times ¢, ¢ and t” both a line starting
and a line ending there. Rule (G3) simplifies, since we have only two time differences now
instead of the three before:

(G3) We introduce two auxiliary lines, going from ¢ to ¢ and from ¢’ to t”. Each cut
between two successive vertices (including the external) introduces a denominator of the
type

owtow e t+eag+...—e—¢€—...+i0",

The energy variables w, w’ are introduced if the first or second auxiliary line is cut, respec-
tively, and have positive (0 = +1 or ¢/ = +1, respectively) or negative signs (¢ = —1 or
o' = —1, respectively) according to the downward or upward direction of the correspond-
ing auxiliary line. If none of the auxiliary lines is cut, then ¢ = ¢’ = 0, and a constant
denominator results in which the imaginary infinitesimal 0™ can be omitted.

Other rules presented in section IIB also change slightly. The overall factor for the
Feynman diagrams in rule (F4) is now (—1)(—4)"?"™ = i"*! the overall factor for the
Goldstone diagrams in rule (G4) is (—=1)(—7)""*? = +1. The rule for the additional sign
factor is now simply: multiply with —1 if only equal times are connected (i. e. ¢ to ¢, t’ to
', and t” to t”) or if only unequal times are connected; multiply with +1 otherwise.

The (n + 3)! Goldstone diagrams can be divided into six classes of diagrams according

to the six possible time orderings of ¢, ¢’ and ¢” for the external vertices. The diagrams of a

given time ordering contribute only to the respective parts of R.
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The number of Feynman diagrams in order n is here the same as in the direct approach
(see section IIB), and the diagrams look very similar. Actually, the Goldstone diagrams
can be obtained from the diagrams of the direct approach by dropping all diagrams which
have an interaction vertex between the dotted lines corresponding to the times ¢ and ¢/, and
letting these two dotted lines merge into one line for the remaining diagrams.

For a given time ordering of the external vertices in order n, one here only has to consider
(n+3)!/3! (=1, 4, 20, ...) different Goldstone diagrams for every Feynman diagram. Hence
the number of Goldstone diagrams for a given time ordering of the external vertices in order

n is considerably lower than in the direct approach:
e n=0: 2 (Fig. 15)
e n=1: 24 (Fig. 16)
e n=2:720

The 36 Feynman diagrams of the second order are shown in Fig. 17.

Since we have here only three instead of four time arguments, there is a reduction in the
number of Goldstone diagrams by a factor of 4/(n + 4) compared to the direct approach.
Additionally, one has to consider that we now have to evaluate only the diagrams for one
time ordering of the external vertices. This yields the generalized densities, and from these
one can then obtain the particle and the hole component of the natural, the scattering-
motivated or the ionization-motivated Green’s function—all from this one single result. In
contrast, different time orderings of the external vertices have to be considered in the direct
approach.

One can obtain the generalized densities by evaluating the diagrams with a method similar

to the one used in the direct approach (section IIB). The results are:

PP ON . = 57 S puBarBst — M NsOpsOgtOr + (s — 1Tis) (OpuVsqgr — SgtVsurp)
1505t Vqupr (1 — Opubgr) — Mp0ryVgspt (1 — 0psdgr)
71 O Vustp (1 — Opubist) + MsOpsVuger (1 — 04401 (69)
plrabed®) = (8,805 — Gaseq) (Oopdar — Gbrdap) (70)
BT = (8, 80y — SarOer) (OpsOaue — Fus) (71)
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FIG. 15: Goldstone diagrams for the first component RY) of the three-times Green’s function for

a closed-shell molecule in zeroth order

where the superscript (0, 1) means the contributions of both zeroth and first order. When
determining the latter two densities, it is helpful to have the generalized densities T? already
available. Note that using the same matrix notation as in section II B, the polarization
propagator can be written as
I (w)=T! L 1.
pars qu _ E _ 'V rs
Thus the T'? can be obtained from the literature on the polarization propagator (e. g. [27]).
We will demonstrate in the next section how to derive the inelastic propagator from the
generalized densities explicitly in first order. This is exemplarily carried out for the closed-

shell anion case, since there the number of terms one has to consider is considerably lower,

and thus the calculation is more transparent.

C. Closed-shell anion
1. Connection between the generalized densities and a higher elastic Green’s function

Here we make use of the following four-point, three-times Green’s function

Rpgrs(t, ") = = < 07|T [c (t)ch () e (#)ea(")] 107 > (72)

+ < 07| [ef(t)es(#)] 107 >< 07 [ch(t)er (#)]07 > .

The notation is the same as in section I C. As in the case of a closed-shell neutral molecule,
this Green’s function can be obtained from the one used in the direct approach by setting
the two central time arguments equal and interchanging the corresponding annihilation and
creation operators.

Again, there are six different time orderings possible here. All depend only on the two
time differences 7 =t —t and 7/ = t' — t”, and we can write the Green’s function as a sum

of six terms, just as we have done in the case of a closed-shell molecule in section III B.
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FIG. 16: Goldstone diagrams for the first component R) of the three-times Green’s function for

a closed-shell molecule in first order

By inserting complete sets of energy eigenstates [N > of the neutral open-shell molecule,

we obtain

T (PN — Gy pld 0T) 2l

(@ — (BB — EOT) 1 0%) (o — (BN — BOT) + 407

(1) —
qurs(w7w/) = + Z

M,N

(73)

In other words, one obtains the generalized one-particle density of the neutral open-shell
system from the residues of the Green’s function R defined in (72) for the closed-shell anion.

Using the same mathematical steps on the other five components of R, which correspond
to the other five time orderings, it turns out that they provide different physical information
than RY), but that information (e. g. transition amplitudes from the anion to the dianion,

and dianion energies) is not of interest here.
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FIG. 17: Feynman diagrams for the three-times Green’s function for a closed-shell molecule in

second order

2. Diagrammatic representation

The Feynman rules are almost identical to the ones used in the direct approach (see
section IIB). In rule (F1), we have now one line starting at time ¢ and one at ¢, and one
line ending at time ¢ and one at time ¢”. Rule (G3) is the same as in the Dyson approach
to the closed-shell neutral molecule (see section IIIB). The overall factor for the Feynman
diagrams in rule (F4) is now (—1)(—4)"*"*? = i", the overall factor for the Goldstone
diagrams in rule (G4) is (—1)(—i)""™ = +1. The additional sign factor is here +1 if ¢’ is
connected to itself, and —1 otherwise.

The (n + 3)! Goldstone diagrams can be divided into six sets of diagrams according to

the six possible time orderings of ¢, ¢’ and t” for the external vertices. Each set of diagrams
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FIG. 18: Goldstone diagrams for the first component RU) of the three-times Green’s function for

a closed-shell anion in zeroth order

FIG. 19: Goldstone diagrams for the first component R() of the three-times Green’s function for

a closed-shell anion in first order

contributes only to the respective component of R.

The number of Feynman diagrams in order n is the same as in the direct approach. But
since we have to consider only (n 4 3)!/3! different Goldstone diagrams for every Feynman
diagram and a given time ordering of the external vertices, the number of Goldstone diagrams

one has to evaluate in order n is now relatively moderate:
e n=0:1 (Fig. 18)
e n=1: 4 (Fig. 19)
e n=2: 100

The five Feynman diagrams in the second order are shown in Fig. 20.

The usage of only three instead of the four different times in the direct approach leads
to a reduction in the number of Goldstone diagrams by a factor of 4/(n + 4), although the
number of Feynman diagrams stays the same. One could even consider the third order,
where one has 23 Feynman diagrams. These look very similar to the Feynman diagrams
for the polarization propagator in third order [30]. There are 120 Goldstone diagrams for
every Feynman diagram, and hence 2760 Goldstone diagrams to evaluate. This is a quite

demanding task, but still in a feasible range.
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FIG. 20: Feynman diagrams for the three-times Green’s function for a closed-shell anion in second

order

3. Calculating the particle component of the inelastic Green’s function with the Dyson-like

equation

The explicit results for the four diagrams in first order are given in appendix 3. Evaluating
them with methods very similar to the ones used in the direct approach (compare section

IIC), we obtain the generalized densities:

pg%g](()’l) = Ny OpsOgr — OprOsq + Vrspg (Mg — Ngliy) (74)
P%gt_ﬂ}(o) = 5m (51085(# - 5pt5qs) (75)
Pz[ziiuﬂ(o) = Ogu (517857“?5 - §pt57“8) . (76)

Just as in the direct approach, it turns out that the energies of the excited states receive no
contribution in first order. This implies that G also receives no contribution in first order

[see eq.(62)], and hence

o OgrOpsTpTl
AP0 () — qr9psTpTls 0. 77
a () w—(ep—eq)+i0++ (77)
Additionally, we have
~[p,5tu] (0,1 _ AY[5tu,p](0,1 _
GO () = GEPOD () = 0 (78)
and
~labe.de 5 nanbﬁcndneﬁ 5ct (5ad6be — 6a65bd>
G[abc,deﬂ(O) _ pq f 79
pa () w— (e, — €, — €+ €.) + 10T (79)
Using eq.(65), we can also easily determine
p;rr[ﬁ’g](o’l) = Ny0psOgr + OpgOrs + Vgspr (Mg — Mgy (80)
p(—]i-TLﬁst_u}(O) - 6qu (6ps(5rs - 5pt6rt) (81)
P;ﬂ[gt_uﬂ(o) = Opy (5pt5qs - 5p85qt) : (82)

Employing again a matrix notation like in section II C, with the subblocks denoted by 1,2,

etc. in square brackets, we can then write the Dyson equation for the particle component of
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the natural inelastic propagator up to first order in the following form:
GHLiu® — é[lvl}(o)p+[lvl}(l) + é[l,ll(O)AHl,ll(l)é[lvl}(o)pﬂlvl}(o)

+ GO AW G220) 5+ 2.110) (83)

plus several other terms which vanish due to the vanishing components of G given above.

Using the definition (58) of A™, inserting the Hartree-Fock one-particle interaction

Wpe = — Z Vonlgn]Nn

and the results given about, we arrive at

é[1,1](0)p+[1,1](1) _ Vastpr] (Rgnr — ngMy)
€g+te —e—€)(w—e+e+i0F)

—~

GILIO A+1LIM G0 priae) = Ly Vostpr] = 2o Vanfraindps

2 (w—e+€6+101)(w—¢€ +¢€ +i07)
GO A+ GR2AO) HH210) — lﬁr Vasipr] +‘Zn Vanirn]"n0ps ‘

2 (w—¢€+€6+i0%)(w—€ +€ +i0F)

Adding everything together, the terms with

Z ‘/qn[rn} N,

which correspond to ”"tadpole” graphs, cancel out, and we finally obtain

GHlpsl() Vasipr] Mg B ﬁr (84)
qr Gte—e6—6 |w—(6—€)+i0t  w— (6 —¢€)+i0T]’

which agrees completely with the result (48) from the direct approach.

We see here that even after one has obtained the generalized densities from the diagrams,
one still needs to carry out some additional manipulations until one actually obtains the
desired inelastic Green’s function. Furthermore, in order to get the inelastic propagator
for one particular type of excited states (here: 1h states), it is not sufficient to take the
corresponding generalized densities into account—one also needs the generalized densities
for other states (here: 2hlp states).

Therefore, even if one wants to obtain only G one has to consider all (n + 3)!/3!
time orderings of the Feynman diagrams. In contrast, only (n + 2)!/2! time orderings were
needed for this special case in the direct approach. On the other hand, if one desires also the
propagators between higher excited states, one would have to take into account (n + 4)!/4!
time orderings in the direct approach, but only (n + 3)!/3! time orderings in the Dyson

approach presented here.
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D. Closed-shell cation
1. Connection between the generalized densities and a higher elastic Green’s function

This case is very similar to that of a closed-shell anion, and we may present the results

briefly. We now use the following four-point, three-times Green’s function
Ryrs(t,1,8") = = < O7|T [ ()] (e (¢)cl(¢)] 07 > (85)
+ < 0MT [e(t)el (#)] 107 >< 0F[ch(t)er (#)]07 >,
where |0" > denotes the ground state of the (closed-shell) cation of the open-shell target.

By inserting complete sets of energy eigenstates [N > of the neutral open-shell molecule,

we obtain here

(I / yI[’MH )
R — -
pars (@s W) +A%;V w — (EM] — EI07)) 440t o' — (EINT — EO7]) 440+
(P gy ). (56)

Again, the generalized one-particle density can be obtained from the residues of this Greens’
function.

Just as in the case of the closed-shell anion, the other five time orderings RU? to R(VY)
provide different physical information—Dbut this information is not of interest in the present

context (e. g. transition amplitudes from the cation to the dication).

2. Diagrammatic representation

The Feynman rules are almost the same as in the closed-shell anion case (compare section
[IIC). The main difference is that we have now a line starting at time ¢’ and a line ending at
time ¢. The additional sign factor in the rules (F4) and (G4) is also different: it is here —1
if ¢’ is connected to itself and +1 otherwise. The Feynman diagrams look very similar—the
only difference lies in the direction of the external lines. The Goldstone diagrams in zeroth
and first order are shown in Figs. 21 and 22, and the Feynman diagrams of second order are
shown in Fig. 23.

Evaluating the single diagram in zeroth and the four diagrams in first order, we obtain

the following generalized densities:
Pg;’s](()’l) = NyOpsOgr + Opgrs + Vrpgs (Tigny — Ny ) (87)
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FIG. 21: Goldstone diagrams for the first component R) of the three-times Green’s function for

a closed-shell cation in zeroth order

FIG. 22: Goldstone diagrams for the first component R) of the three-times Green’s function for

a closed-shell cation in first order

ﬂlﬁ«’sm](o) = 6qu (517367"15 - 5pt5rs> (88)
P PO = 67, (BpsBar — Optdgs) (89)

The inelastic Green’s functions can then be obtained in analogy to those obtained in section

I1C.

IV. DISCUSSION AND CONCLUSIONS

Two different methods, the direct approach and the Dyson approach, for determining the
inelastic propagator were presented in this work. Both can be used to obtain the natural, the
scattering-motivated and the ionization-motivated inelastic Green’s function. Furthermore,
both are applicable for closed- and also for open-shell molecules, provided that there exists
a closed-shell anion or cation. An extension of the method to cases where both the neutral

molecule and the singly charged molecules are open-shell, but the dianion or dication is

FIG. 23: Feynman diagrams for the three-times Green’s function for a closed-shell cation in second

order
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closed-shell, would be rather straightforward. The resulting diagrams would be similar to
those in the closed-shell neutral molecule case.

The direct approach yields the inelastic propagator itself by evaluating the diagrams for
the elastic six-point, four-times Green’s function. From the point of view of this construction
scheme, the scattering- and the ionization-motivated Green’s function look in a way more
"natural” than the natural Green’s function—they can be both obtained consistently from
the single formulas (14) and (15), respectively, whereas the two different formulas (16) and
(17) have to be combined in order to get the natural Green’s function. But in the actual
diagrammatic evaluation, it turned out that the natural Green’s function is easier to obtain
after all—it is not plagued by additional, spurious phase factors.

A drawback of the direct approach is that even in low orders the necessary number of
diagrams is already quite large (especially for closed-shell neutral molecules). Nevertheless,
we think that the formalism provides promising opportunities for theoretical studies of the
inelastic propagator. For example, it should be possible to obtain diagrammatic rules for the
inelastic self-energy, which is an optical potential for inelastic scattering [21]. In addition,
it has to be noted that a significant reduction in the number of diagrams can be achieved
in those relevant cases where propagators only between singly excited states are desired. In
that case, the direct approach should be of good practical use. In contrast, if all inelastic
propagators are of interest, the Dyson approach is preferable, since it requires a significantly
lower number of diagrams.

Csanak and coworkers have presented methods similar to our direct approach [see espe-
cially eq. (9) in [15]] and also equations involving higher order Green’s functions. With these
methods, they calculated Bethe-Salpeter amplitudes, which differ from our Green’s functions
by phase factors. They also gave an interpretation of their formulas with Feynman-type di-
agrams. But in contrast to our approach, they did not develop a systematic diagrammatic
approach employing the evaluation of higher order Green’s functions with Feynman rules.
Further advantages are that our formalism is also applicable to molecules which only pos-
sess a closed-shell ion, and can provide all three types of inelastic Green’s functions directly
instead of only the Bethe-Salpeter amplitudes.

An obvious generalization of our straightforward diagrammatic expansion would be to
combine the successful Algebraic Diagrammatic Construction scheme [1, 27, 30] with the

direct approach, in order to be able to include systematically higher order corrections to the
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inelastic propagator. Therefore, it would be desirable to have a method to evaluate directly
the diagrams of the inelastic propagator instead of those of the higher multi-times Green’s
function, from which one has to extract the desired inelastic propagator. We currently work
on the development of such a method.

As already pointed out, the approach using the Dyson-like equations and generalized
density provides the inelastic propagators by evaluating significantly less diagrams than the
direct approach. Interestingly, the Dyson-like equations can also provide further insights
into the underlying physics.

It should be remarked here that if the projectile is distinguishable from the particles
of the target, AT [see eq.(58)] provides already an optical potential for the scattering [18,
21]. In this case, calculating the generalized densities is already sufficient for solving the
scattering problem, and the inelastic propagator itself is not explicitly needed. Here, the
Dyson approach is obviously much more appropriate than the direct approach.

On the other hand, if the projectile is indistinguishable from the target’s particles, the full
inelastic propagator is needed. To obtain it from the generalized densities, a considerable
amount of additional work is required. Furthermore, it is a rather inconvenient fact that
generalized densities for higher excited states are necessary for calculating the propagator
between low excited states. It is also unclear yet how one can obtain a diagrammatic
representation of the inelastic self-energy by using this approach.

A possible alternative method for obtaining the generalized densities was recently de-
veloped by Schirmer and Trofimov [31] with the help of the Algebraic Diagrammatic Con-
struction scheme mentioned above. But we think that our diagrammatic approach is more
transparent and can thus serve better for a systematic treatment and interpretation of the
various contributions.

Summarizing, the methods presented here provide systematic diagrammatic approxima-
tion schemes for the various inelastic propagators. For the cases of the closed-shell anion
and cation, the second order approximation is easily feasible, and even the third order
should be viable. The methods should also be well suited for theoretical investigations of
the inelastic propagator and for obtaining a better understanding of the underlying physics.
Combinations with already known approximation methods like the Algebraic Diagrammatic

Construction scheme should be possible to obtain.
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APPENDIX: CONTRIBUTIONS IN FIRST ORDER

1. Four-times Green’s function for a closed-shell neutral molecule

The contributions of the 30 diagrams shown in Fig. 4 are listed below.
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2. Four-times Green’s function for a closed-shell anion

The diagrams of Fig.9 are simply numbered from 1 to 5. Their contributions are:
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3. Three-times Green’s function for a closed-shell anion

The diagrams of Fig.19 are simply numbered from 1 to 4. Their contributions are:
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