
Weitere Integrationsregeln

1. Berechnen Sie die Ableitung der Funktion $f(x) = \ln(-x)$ (Kettenregel!). Geben Sie außerdem die maximal mögliche Definitionsmenge dieser Funktion an. Was folgt daraus für die Ableitung und die Definitionsmenge von $f(x) = \ln |x|$? Was folgt daraus für das Integral $\int \frac{1}{x} dx$?

2. Das Integral $\int \frac{2x^2-3x+5}{x^2} dx$ ist nicht direkt berechenbar. Teilen Sie den Bruch in eine Summe von drei Brüchen auf, kürzen Sie und berechnen Sie damit das ursprüngliche Integral.

3. Begründen Sie, dass $(\ln |2x - 1|)' = \frac{2}{2x - 1}$ ist. Was gilt allgemein für die Ableitung der Funktion $f(x) = \ln |ax + b|$? Was folgt für das Integral $\int \frac{1}{ax + b} dx$? Zusatzfragen: Außerdem kann man das Integral durch Ausklammern auch schreiben als $\int \frac{1}{a(x + \frac{b}{a})} dx = \frac{1}{a} \int \frac{1}{x + \frac{b}{a}} dx$. Was folgt damit für den Wert des Integrals? Wieso widerspricht dies nicht dem ersten Ergebnis, das Sie erhalten hatten?

5. Zeigen Sie, dass (ln $|x^2 + 1|$)' = $\frac{2x}{x^2 + 1}$ ist. Was folgt daraus für das Integral $\int \frac{2x}{x^2 + 1} dx$? Was folgt allgemeiner für die Ableitung von ln |f(x)| und das Integral $\int \frac{f'(x)}{f(x)} dx$? Benutzen Sie dieses allgemeine Ergebnis, um $\int \frac{e^x}{e^x + 1} dx$ zu berechnen.