Verhalten an Definitionslücken

Beispiel: $f(x) = \frac{x^2 - x}{x^2 - 1}$; $D_f = \mathbb{R} \setminus \{$

X	-3	-2	-1,5	-1,1	-0,9	-0,5	0	0,5	0,9	1,1	1,5	2	3
f(x)													

Für $x \to -1^{\mp}$ gilt $f(x) \to$ (f divergiert: Polstelle),

aber für $x \rightarrow 1$ gilt anscheinend $f(x) \rightarrow$ (f konvergiert: stetig hebbare Definitionslücke).

"stetige Fortsetzung":

$$\bar{f}(x) = \begin{cases} \\ \end{cases}$$

Definitionen:

Gilt $\lim_{x \to x_0} f(x) = \pm \infty$, so heißt x_0 eine <u>Pol-</u> oder <u>Unendlichkeitsstelle</u>. Gilt dagegen $\lim_{x \to x_0} f(x) = g \in \mathbb{R}$, so

heißt x_0 eine stetig (be)hebbare Definitionslücke (SHD). Die Funktion $\bar{f}: x \mapsto \begin{cases} f(x) & \text{für } x \neq x_0 \\ \lim_{x \to x_0} f(x) & \text{für } x = x_0 \end{cases}$ heißt

die stetige Fortsetzung von f (bei x₀).

im Beispiel: $f(-1) = 2/0 \rightarrow Polstelle$; $f(1) = 0/0 \rightarrow ???$

Beachte:

Ist eine Definitionslücke x_0 keine Nullstelle des Zählers, so muss x_0 eine Polstelle sein (denn dort ist $f(x_0) = \text{konst./0!}$); ist dagegen x_0 eine Nullstelle des Zählers, so ist erst mal keine Aussage möglich!

Man kann dann im Zähler und Nenner jeweils einen Faktor $(x - x_0)$ abspalten und kürzen.

im Beispiel: $f(x) = \frac{x(x-1)}{(x+1)(x-1)} =$

$$\rightarrow \bar{f}(x) =$$

$$;\;D_{ar{f}}=\mathbb{R}ackslash\{$$

$$\rightarrow$$
 x₂ = 1 ist SHD

2. Beispiel:
$$f(x) = \frac{x}{x^4 - x^3}$$

 $x_1 = 1$ ist keine Nullstelle des Zählers \rightarrow

 $x_2 = 0$ ist Nullstelle des Zählers \rightarrow

Definition: Ist eine Definitionslücke x_0 von f noch eine n-fache Nullstelle des gekürzten (!) Nenners, so heißt x_0 ein(e) Pol(stelle) n-ter Ordnung (Pn).

Satz: Ist die Ordnung eines Pols $\left\{\begin{array}{l} \text{ungerade} \\ \text{gerade} \end{array}\right\}$, so hat f dort $\left\{\begin{array}{l} \text{einen} \\ \text{keinen} \end{array}\right\}$ VZW. Ist x_0 dagegen keine Nullstelle des gekürzten (!) Nenners mehr, so ist x_0 eine SHD.