Das Skalarprodukt

Beispiel:

Sie kaufen für eine Party 10 Flaschen Cola zu je 1,80 €, 20 Flaschen Bier zu je 0,70 € und 3 Flaschen Wodka zu je 8 €. Wie viel geben Sie insgesamt aus?

Zur Abkürzung kann man die gekauften Mengen in einem "Mengenvektor" $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 10 \\ 20 \\ 3 \end{pmatrix}$ und die

Preise in einem "Preisvektor" $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} 1.80 \\ 0.70 \\ 8 \end{pmatrix}$ zusammenfassen. Die gesamten Kosten errechnen sich dann allgemein mit:

Dies schreibt man abkürzend als das sogenannte Skalarprodukt (auch: Punktprodukt oder inneres Produkt) der beiden Vektoren; ein übliches Rechenzeichen dafür ist o, also:

$$\vec{a} \circ \vec{b} =$$

Das Skalarprodukt zweier Vektoren ergibt also immer einen Skalar (eine einzelne Zahl), keinen Vektor!

Rechenregeln:

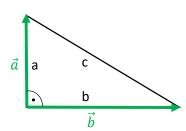
(Kommutativgesetz)

1) $\vec{a} \circ \vec{b} = \vec{b} \circ \vec{a}$ 2) $(k \cdot \vec{a}) \circ \vec{b} = k \cdot (\vec{a} \circ \vec{b})$ (gemischtes Assoziativgesetz; Vorsicht: Der Malpunkt · bezeichnet hier zwei verschiedene Arten von Produkt! Eigentlich: $(k \odot \vec{a}) \circ \vec{b} = k \cdot (\vec{a} \circ \vec{b})$

3) $\vec{a} \circ (\vec{b} + \vec{c}) = \vec{a} \circ \vec{b} + \vec{a} \circ \vec{c}$ (Distributivgesetz) 4) $\vec{a} \circ \vec{a} =$

Geometrische Bedeutung:

Betrachte ein rechtwinkliges Dreieck:



In diesem gilt bekanntlich der Satz des Pythagoras:

Das kann man aber auch mit den eingezeichneten Vektoren schreiben:

 $|\vec{a} \circ \vec{b}| = \iff \vec{a}$ Es folgt:

Betrachte außerdem noch Vektoren \vec{a} und \vec{b} , die beide in dieselbe Richtung zeigen. Dann kann man beide als Vielfache desselben Einheitsvektors \vec{e}^0 schreiben:

$$\vec{a} = |\vec{a}| \cdot \vec{e}^0$$
; $\vec{b} = |\vec{b}| \cdot \vec{e}^0$,

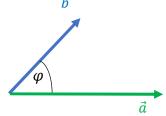
und damit folgt für ihr Skalarprodukt:

$$\vec{a} \circ \vec{b} =$$

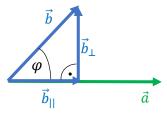
also letztlich einfach

$$\vec{a} \circ \vec{b} =$$

Betrachte dann Vektoren \vec{a} und \vec{b} , die einen beliebigen Winkel φ (zwischen 0° und 90°) miteinander einschließen:



Den Vektor \vec{b} kann man aber immer zerlegen in zwei Teilvektoren: $\vec{b} = \vec{b}_{||} + \vec{b}_{\perp}$, wobei $\vec{b}_{||}$ parallel zu \vec{a} ist und \vec{b}_{\perp} senkrecht zu \vec{a} :



Dann folgt mit dem Distributivgesetz:

$$\vec{a} \circ \vec{b} = \vec{a} \circ (\vec{b}_{||} + \vec{b}_{\perp}) =$$

Weil \vec{b}_{\perp} nach Konstruktion senkrecht zu \vec{a} ist, gilt aber $\vec{a} \circ \vec{b}_{\perp} = 0$. Weil außerdem $\vec{b}_{||}$ parallel zu \vec{a} ist, gilt $\vec{a} \circ \vec{b}_{||} = 0$. Also bleibt nur:

$$\vec{a} \circ \vec{b} =$$

Die Länge von $\vec{b}_{||}$ können wir schließlich im rechtwinkligen Dreieck oben mit Trigonometrie bestimmen:

$$|\vec{b}_{||}| =$$

und damit folgt dann schließlich

$$\vec{a} \circ \vec{b} =$$

bzw. umgestellt

$$\cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

Für Winkel > 90° läuft die Argumentation prinzipiell ähnlich, das sparen wir uns hier.