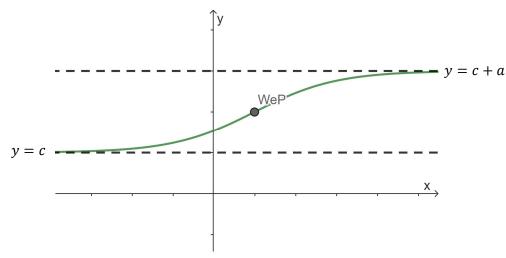
Logistische Funktionen

Funktionen, deren Term man in die Form $f(x) = \frac{a}{1+b\cdot e^{-kx}} + c$ mit $a, b, k \in \mathbb{R}^+, c \in \mathbb{R}$ bringen kann, heißen logistische Funktionen.

Solche Funktionen beschreiben Wachstumsvorgänge, die zunächst exponentiell ansteigen, dann aber doch wieder langsamer werden und sich einer Obergrenze annähern.

Eigenschaften:

- Die größtmögliche Definitionsmenge ist $D_f = \mathbb{R}$; alle folgenden Aussagen gelten für diese Definitionsmenge!
- Es gilt $f(x) \to c^+$ für $x \to -\infty$ und $f(x) \to (c+a)^-$ für $x \to +\infty$, es gibt also zwei waagrechte Asymptoten. Beide Asymptoten werden vom Graphen nicht geschnitten.
- Die Wertemenge ist deshalb $W_f =]c; c + a[$.
- Der Graph ist streng monoton steigend; es gibt also keine Extrempunkte.
- Der Graph ist zunächst linksgekrümmt, dann rechtsgekrümmt; es gibt also genau einen Wendepunkt. (Und der Graph ist zu diesem Wendepunkt symmetrisch.)



Anmerkungen:

- 1) Of ist c = 0.
- 2) In seltenen Fällen können a, c und/oder k auch mal negativ sein.