Lineare Gleichungen mit Parameter lösen (wenn nach der Variable x aufzulösen ist)

Allgemein	Beispiel 1: $ax + 3 = -x - 1$ mit $a \in \mathbb{R}$	Beispiel 2: $2kx + 3k = 6x + 9$ mit $k \in \mathbb{R}$
1. Summanden mit x auf die linke Seite,	ax + 3 = -x - 1 + x - 3	2kx + 3k = 6x + 9 -6x - 3k
Konstanten auf die rechte Seite bringen.	==> ax + x = -4	==> 2kx - 6x = 9 - 3k
2. linke Seite zusammenfassen	$(a+1)\cdot x = -4$	$(2k-6)\cdot x = 9 - 3k$
(x ausklammern)	, , ,	, , ,
3. als Nebenrechnung überprüfen (kann man	$NR: a + 1 = 0 \Longrightarrow a = -1$	NR: 2k - 6 = 0 ==> 2k = 6 ==> k = 3
oft im Kopf machen!): kann der Koeffizient		
von x gleich 0 werden? wenn ja: Fallunter-		
scheidung nötig! (weil man ja dadurch teilen		
müsste!)		
4. Die Fälle, für die der Koeffizient von x	Fallunterscheidung:	Fallunterscheidung:
gleich 0 wird, einzeln anschauen: den	1) $a + 1 = 0 ==> a = -1$:	1) $2k - 6 = 0 ==> k = 3$:
jeweiligen Wert des Parameters in die	$0 \cdot x = -4 = > 0 = -4$	$0 \cdot x = 9 - 3 \cdot 3 = 0 = 0$
Gleichung einsetzen und überprüfen, ob die	==> keine Lösung (L = {})	$==>$ unendlich viele Lösungen (L = \mathbb{R})
Gleichung dann keine Lösung hat (falsche		<u> </u>
Aussage, z. B. $0 = 1$) oder unendlich viele		
Lösungen (wahre Aussage, z. B. 0 = 0)		
5. Für alle anderen Werte des Parameters die	2) $a + 1 \neq 0 ==> a \neq -1$:	2) $2k - 6 \neq 0 ==> k \neq 3$:
Gleichung allgemein lösen; das Ergebnis so	$(a+1)\cdot x = -4 \mid :(a+1) \neq 0$	$(2k-6)\cdot x = 9 - 3k \mid :(2k-6) \neq 0$
weit wie möglich vereinfachen! (z. B. in	$X = \frac{-4}{a+1}$	$x = \frac{9-3k}{2k-6} = \frac{-3(-3+k)}{2(k-3)} = -\frac{3}{2}$
einem Bruch Zähler und Nenner faktorisieren	a+1 (weiteres Vereinfachen nicht möglich)	2k-6 $2(k-3)$ 2
und den Bruch dann kürzen)	(weiteres vereinjachen nicht moglich)	