Kurvendiskussion gebrochenrationaler Funktionen

allgemein (Zählergrad: ZG; Nennergrad: NG)	Beispiel: $f(x) = \frac{x^3 + x^2 - 2}{2x^2 - 2}$
1. Definitionsmenge	
Definitionslücken sind die Nullstellen des Nenners	$2x^2 - 2 = 0 \implies x_1 = 1, x_2 = -1 \implies D_f = \mathbb{R} \setminus \{1; -1\}$
2. Symmetrie (auch D_f muss symm. zu 0 sein!)	$2x^2 - 2 = 0 \implies x_1 = 1, x_2 = -1 \implies D_f = \mathbb{R} \setminus \{1; -1\}$ D_f ist zwar symmetrisch zu 0, aber:
Zähler und Nenner beide gerade oder beide ungerade:	Zähler ist weder gerade noch ungerade (, Nenner ist
Graph symmetrisch zur y-Achse; einer ungerade, der	gerade) → keine Symmetrie zum KS
andere gerade: symmetrisch zum Ursprung; sonst keine	
Symmetrie zum KS	
3. Gemeinsame Punkte mit den Achsen	
mit y-Achse: f(0) berechnen	$f(0) = (-2)/(-2) = 1 \implies S_y(0 1)$
mit x-Achse: Nullstellen von f sind die Nullstellen des	$x^3 + x^2 - 2 = 0 \implies x_3 = 1 \notin D_f$
Zählers, die zu <i>D</i> _f gehören	→ keine Nullstellen
4. Asymptoten / Definitionslücken	3 > 2 \rightarrow Polynomdivision: $f(x) = 0.5x + 0.5 + \frac{x-1}{x}$
waagrechte und schiefe Asymptoten: ZG < NG → waagrechte Asymptoe: y = 0 (x-Achse)	3 > 2 \rightarrow Polynomdivision: $f(x) = 0.5x + 0.5 + \frac{x-1}{2x^2 - 2}$
$ZG = NG \rightarrow \text{waagrechte Asymptote: } y = \frac{LK Z}{LK N}$	\Rightarrow schräge Asymptote: $y = 0.5x + 0.5$
ZG > NG → Polynomdivision nötig; der ganzrationale	
Teil des Ergebnisses gibt die schräge Asymptote (ZG = NG + 1) bzw. Asymptotenkurve (ZG > NG + 1) an	Faktorisierung: $f(x) = 0.5x + 0.5 + \frac{x-1}{2(x+1)(x-1)}$
senkrechte Asymptoten: Funktionsterm faktorisieren (i. A.	⇒ $\bar{f}(x) = 0.5x + 0.5 + \frac{x-1}{2(x+1)(x-1)}$ Polstelle $x_2 = -1$
in der Asymptotenform einfacher!) und so viel wie	(1. Ordnung \rightarrow VZW) \rightarrow senkrechte Asymptote: $x = -1$
möglich kürzen; die dann noch übrigen Definitionslücken	, , ,
sind Polstellen (gerade Vielfachheit: ohne VZW;	bei behebbarer Definitionslücke $x_1 = 1$: $\bar{f}(1) = \frac{5}{4}$
ungerade: mit VZW); an jeder Polstelle ist eine senkrechte	4
Asymptote behebbare Definitionslücken: evtl. Funktionswerte mit	
stetiger Fortsetzung (gekürzte Funktion) berechnen	
5. Ableitungen	1 1
so wenig wie möglich; bei 2. Ableitung für die Ableitung	$f'(x) = 0.5 - \frac{1}{2(x+1)^2}$; $f''(x) = \frac{1}{(x+1)^3}$
des Nenners meist Kettenregel und kürzen sinnvoll; i. A.	$2(x+1)^2 \qquad (x+1)^2$
ist bei der (gekürzten) Asym.form das Ableiten leichter,	
aber die folgenden Rechnungen dann evtl. komplizierter	
6. Extremstellen	$0.5 - \frac{1}{1} = 0 \Rightarrow (y+1)^2 = 1$
notwendig: $f'(x_0) = 0$ (D_f beachten!)	$0.5 - \frac{1}{2(x+1)^2} = 0 \implies (x+1)^2 = 1$
<u>hinreichend:</u> VZW von f' bei x_0 bzw. f''(x_0) $\neq 0$	\Rightarrow x ₄ = 0 ∈ D _f , x ₅ = -2 ∈ D _f
	f''(0) = 1 > 0, f''(-2) = -1 < 0, f(0) = 1; f(-2) = -1
(dafür) evtl. Monotonieintervalle bestimmen	\rightarrow HoP(-2 -1), TiP(0 1)
(Vorzeichentabelle oder graphisch)	für Vorzeichentabelle / graphische Bestimmung der
	Monotonieintervalle: f'(x) erst als Bruch schreiben!
	$f'(x) = \frac{(x+1)^2 - 1}{2(x+1)^2} = \frac{x^2 + 2x}{2(x+1)^2}$
	, , , , , , , , , , , , , , , , , , , ,
	Nenner ist in D_f immer $> 0 \rightarrow VZ$ wird vom Zähler
	bestimmt; also: f' > 0 für x < -2 oder x > 0,
	f' < 0 für $-2 < x < -1$ und $-1 < x < 0$ (D_f beachten!),
	\rightarrow G _f ist smf in [-2;-1[und]-1;0], sms in]- ∞ ;-2]
	und [0;∞[\{1}
6. Wendestellen	1 (0.6% 11) 11 11
<u>notwendig:</u> $f''(x_0) = 0$ (D_f beachten!)	$\frac{1}{(x+1)^3} \neq 0$ für alle x \rightarrow keine Wendestellen
<u>hinreichend:</u> VZW von f '' bei x_0 (bzw. f'''(x_0) $\neq 0$)	f'' > 0 für $x > -1$; $f'' < 0$ für $x < -1$
	→ G_f ist rechtsgekrümmt in $]-\infty;-1[$, linksgekrümmt
(dafür) evtl. Krümmungsintervalle bestimmen	
(Vorzeichentabelle oder graphisch)	$ [in] -1; \infty [\setminus \{1\}] $

