Kurvendiskussion von Funktionen, die aus ganzrationalen und Exponentialfunktionen zusammengesetzt sind

Laut Lehrplan sollen nur Funktionen mit Termen der Form $f(x) = g(x) e^{h(x)} + y_0$ behandelt werden, wobei g und h maximal quadratische Funktionen sind und y_0 eine Konstante ist.

Allgemein:	Beispiel 1:
$f(x) = g(x) e^{h(x)} + y_0$	$f(x) = x e^{-x^2/2}$
1. Symmetrie $f(-x) = f(x) \Rightarrow G_f$ ist symmetrisch zur y-Achse $f(-x) = -f(x) \Rightarrow G_f$ ist symmetrisch zum Ursprung	$f(-x) = (-x) \cdot e^{-\cdot(-x)^2/2} = -x e^{-x^2/2} = -f(x)$ $\Rightarrow G_f \text{ ist symmetrisch zum Ursprung}$
2. Verhalten für $x \to \pm \infty$ und Asymptote $\lim_{x \to -\infty} e^x = 0$; $\lim_{x \to \infty} e^x = \infty$; "e ^x gewinnt gegen jede Potenz" ausnutzen	$\lim_{x \to -\infty} x e^{-x^2/2} = 0^- \text{(e gewinnt)}$ $-\infty 0^+$
wenn h(x) gegen $-\infty$ geht für $x \to \infty$ bzw. $x \to -\infty$: waagrechte Asymptote $y = y_0$	$\lim_{x \to +\infty} x e^{-x^2/2} = 0^+ \text{ (e gewinnt)}$ $+\infty 0^+$ $\Rightarrow \text{ w. As.: } y = 0 \text{ (x-Achse)}$
3. Ableitungen Normalerweise genügen zwei. Man sollte immer ausklammern und zusammenfassen!	⇒ w. As.: $y = 0$ (x-Achse) $f'(x) = x' e^{-x^2/2} + x (e^{-x^2/2})'$ $= 1 \cdot e^{-x^2/2} + x \cdot e^{-x^2/2} \cdot (-x)$ $= (1 - x^2)e^{-x^2/2}$ $f''(x) = (1 - x^2)'e^{-x^2/2} + (1 - x^2)(e^{-x^2/2})'$ $= -2x \cdot e^{-x^2/2} + (1 - x^2) \cdot e^{-x^2/2} \cdot (-x)$ $= (x^3 - 3x) \cdot e^{-x^2/2}$ $x e^{-x^2/2} = 0; e^{-x^2/2} > 0 \Rightarrow x_1 = 0 \Rightarrow N(0 0)$
4. Gemeinsame Punkte mit den Achsen Gleichung $f(x) = 0$ lösen: Wenn $y_0 = 0$ ist, nutzt man $e^{} > 0$ und den Satz vom Nullprodukt, löst also letztlich nur $g(x) = 0$. Wenn $y_0 \neq 0$ ist, ist die Gleichung i. A. nicht lösbar; man kann aber mit Grenzverhalten, VZW, Stetigkeit und evtl. Monotonie argumentieren.	$x e^{-x^2/2} = 0; e^{-x^2/2} > 0 \implies x_1 = 0 \implies N(0 0)$
(Schnittpunkt mit y-Achse: f(0) berechnen)	Schnittpunkt mit y-Achse: $f(0) = 0$ $e^{-0^2/2} = 0$ \Rightarrow $S_y(0 0) = N$
5. Extrempunkte / Monotonie notwendig: $f'(x_0) = 0$; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von $f'(vgl. Monotonie unten)$ bzw. $f''(x_0) \neq 0$ ungerade, VZW von – nach + bzw. $f''(x_0) > 0$: relatives Minimum ungerade, VZW von + nach – bzw. $f''(x_0) < 0$: relatives Maximum gerade, kein VZW: Terrassenstelle	$(1-x^2)e^{-x^2/2} = 0; e^{-x^2/2} > 0 \implies 1-x^2 = 0$ $\implies x_{1,2} = \pm 1$ f "(1) = $(4 \cdot 1 - 6 \cdot 1) e^{-1^2/2} = \dots = -2 e^{-1/2}$ $< 0 \implies \text{rel. Maximum}$ f "(1) = $\dots = 2 e^{-1/2} > 0 \implies \text{rel. Minimum}$ (oder Monotonie verwenden, s.u.)
danach: y-Werte berechnen (x-Werte in f einsetzen)	$f(1) = 1 \cdot e^{-1^2/2} = e^{-1/2} \approx 0.61$ $\Rightarrow \text{HoP}(1 0.61)$ $f(-1) \approx -0.61 \Rightarrow \text{TiP}(-1 -0.61)$ (oder Symmetrie ausnutzen!)

Monotonieintervalle bestimmen: e··· > 0 verwenden
→ das VZ und damit die Monotonie wird vom
anderen Faktor bestimmt; dessen VZ aus Skizze
bestimmen

$e^{-x^2/2} > 0 \rightarrow VZ \text{ von } f' = VZ \text{ von } 1 - x^2$ Skizze $\rightarrow f' < 0$ für x < -1 oder x > 1; f' > 0 für $-1 < x < 1 \rightarrow G_f$ ist smf in $]-\infty; -1]$ und in $[1; \infty[$, sms in [-1; 1]

→ $x^3 - 4x = 0$ → $x_1 = 0$; $x_{2,3} = \pm \sqrt{3} \approx \pm 1,73$

alle einfach → jeweils VZW von f" → Wende-

 $(x^3-3x)\cdot e^{-x^2/2}=0;\ e^{-x^2/2}>0$

6. Wendepunkte / Krümmung

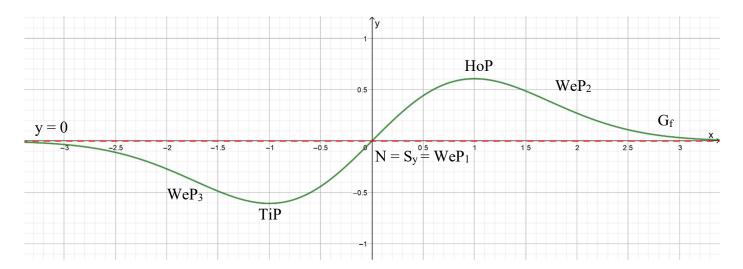
<u>notwendig:</u> $f''(x_0) = 0$; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) <u>hinreichend:</u> VZW von f'' (Vielfachheiten!) (oder $f'''(x_0) \neq 0$)

danach: y-Werte berechnen (x-Werte in f einsetzen)

stellen
$$f(0) = 0 \implies \text{WeP}_1(0|0) = \text{N} = \text{S}_y$$

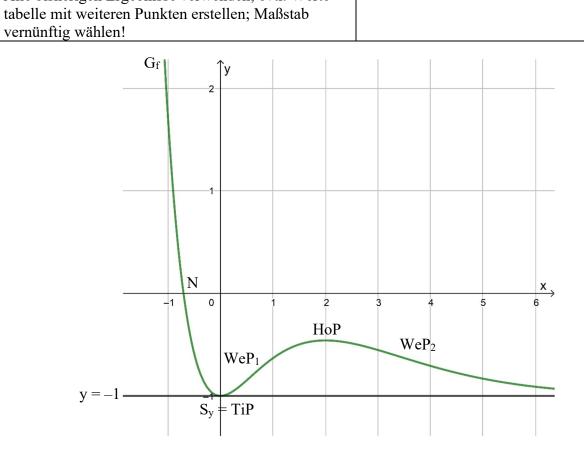
$$f(\sqrt{3}) = \sqrt{3} e^{-\sqrt{3}^2/2} = \sqrt{3} e^{-1.5} \approx 0.39 \implies$$

WeP₂(1,73|0,39); Symmetrie \rightarrow WeP₃(-1,73|-0,39)


Krümmungsintervalle bestimmen: e^{...} > 0 verwenden → das VZ und damit die Krümmung wird vom anderen Faktor bestimmt; dessen VZ aus Skizze bestimmen

 $e^{-x^2/2} > 0$ \Rightarrow VZ von f '' = VZ von $x^3 - 4x$ Skizze \Rightarrow f'' < 0 für x < $-\sqrt{3}$ und 0 < x < $\sqrt{3}$; f'' > 0 für $-\sqrt{3}$ < x < 0 und x > $\sqrt{3}$

→ G_f ist rechtsgekrümmt in $]-\infty; -\sqrt{3}]$ und in $[0; \sqrt{3}]$, linksgekrümmt in $[-\sqrt{3}; 0]$ und in $[\sqrt{3}; \infty[$ siehe unten


7. Graph

Alle bisherigen Ergebnisse verwenden; evtl. Wertetabelle mit weiteren Punkten erstellen; Maßstab vernünftig wählen!

In the first $f(x) = g(x) e^{b(x)} + y_0$ 1. Symmetrie $f(-x) = f(x) \Rightarrow Gr$ ist symmetrisch zur y-Achse $f(-x) = -f(x) \Rightarrow Gr$ ist symmetrisch zur Ursprung 2. Verhalten für $x \to \pm \infty$ und Asymptote $\lim_{x \to \infty} e^x = 0$; $\lim_{x \to \infty} e^x = \infty$	Allgemein:	Beispiel 2:
1. Symmetrie $f(-x) = f(x) \Rightarrow G_{\Gamma}$ ist symmetrisch zur y-Achse $f(-x) = -f(x) \Rightarrow G_{\Gamma}$ ist symmetrisch zum Ursprung 2. Verhalten für $x \to \pm \infty$ und Asymptote $\lim_{x \to \infty} e^{x} = 0; \lim_{x \to \infty} e^{x} = \infty; \text{ ,e}^{x} \text{ gewinnt gegen jede}$ Potenz: ausnutzen venn h(x) gegen $-\infty$ geht für $x \to \infty$ bzw. $x \to -\infty$: waagrechte Asymptote y = y₀ 3. Ableitungen Normalerweise genügen zwei. Man sollte immer ausklammern und zusammenfassen! 4. Gemeinsame Punkte mit den Achsen Gleichung f(x) = 0 lösen: Wenn y₀ = 0 ist, intzt man e··· > 0 und den Satz vom Nullprodukt, löst also letztlich nur g(x) = 0. Wenn y₀ ≠ 0 ist, ist die Gleichung i. A. nicht lösbar; man kann aber mit Grenzverhalten, VZW, Stetigkeit und evtl. Monotonie argumentieren. (Schnittpunkt mit y-Achse: f(0) berechnen) 5. Extrempunkte / Monotonie notwendig: f'(x₀) = 0; diese Gleichung kann immer int dem Satz vom Nullprodukt gelöst werden (s. 4.) hinrichend: VZW von f' (vgl. Monotonie unten) bzw. f''(x₀) ≠ 0 ungerade, VZW von n - nach + bzw. f''(x₀) > 0: relatives Minimum ungerade, VZW von n + nach - bzw. f''(x₀) < 0: relatives Maximum gerade, kein VZW: Terrassenstelle danach: y-Werte berechnen (x-Werte in f einsetzen) Monotonicinitervalle bestimmen: e³ > 0 verwenden ⇒ das VZ und damit die Monotonie wird vom anderen die (x) = (-x)² e^{-(x)} + 1 ≠ f(x) und ≠ −f(x) ⇒ G _f ist nicht symmetrisch zum KS lim x² e^{-x} − 1 = −0† ⇒ waagrechte Asymptote: y = −1 ⇒ (x) = x e^{-x} + x^2 e^{-x} - (-1) = (2x - x²) e^{-x} f''(x) = (2 - 2x) e^{-x} + (2x - x²) e^{-x} + (-1) = (2x - x²) e^{-x} + (2x - x²) e^{-x} + (-1) = (2x - x²) e^{-x} + (2x - x²) e^{-x} + (-1) = (2x - x²) e^{-x} + (2x - x²) e^{-x} + (-1) = (2x - x²) e^{-x} + (2x - x²) e^{-x} + (-1) = (2x - x²) e^{-x} + (2x - x²) e^{-x} + (-1) = (2x - x²) e^{-x} + (2x - x²) e^{-x} + (-1) = (2x - x²) e^{-x} + (2x - x²) e^{-x} + (-1) = (2x - x²) e^{-x} + (2x - x²) e^{-x} + (-1) = (2x - x²) e^{-x} + (-1) = (2x - x²) e^		
		$ 1(\Lambda) - \lambda e = 1$
	•	
2. Verhalten für $x \to \pm \infty$ und Asymptote $\lim_{x \to -\infty} e^x = 0$; $\lim_{x \to \infty} e^x = \infty$; "e' gewinnt gegen jede $\lim_{x \to -\infty} e^x = 0$; $\lim_{x \to \infty} e^x = \infty$; "e' gewinnt gegen jede $\lim_{x \to -\infty} x^2 e^{-x} - 1 = -1^+$ (c. gewinnt) Potenz' ausnutzen wenn $h(x)$ gegen $-\infty$ geht für $x \to \infty$ bzw. $x \to -\infty$: waagrechte Asymptote $y = y_0$ 3. Ableitungen Normalerweise genügen zwei. Man sollte immer ausklammern und zusammenfassen! f'(x) = 2x $e^{x} + x^2 e^{-x} \cdot (-1)$ = $(2x - x^2) e^{-x}$. (-1) = $(2x - x^2) e^{-x} \cdot (-1)$ = $(2x - x^2) e^{-x} \cdot $		
lim $e^{x} = 0$; lim $e^{x} = \infty$; ,, e^{x} gewinnt gegen jede Potenz'' ausnutzen wenn h(x) gegen $-\infty$ geht für $x \to \infty$ bzw. $x \to -\infty$: waagrechte Asymptote $y = y_0$ 3. Ableitungen Normalerweise genügen zwei. Man sollte immer ausklammern und zusammenfassen! 4. Gemeinsame Punkte mit den Achsen Gleichung f(x) = 0 lösen: Wenn $y_0 = 0$ ist, nutzt man $e^{-x} > 0$ und den Satz vom Nullprodukt, löst also letztlich nur g(x) = 0. Wenn $y_0 = 0$ ist, sit die Gleichung i. A. nicht lösbar; man kann aber mit Grenzverhalten, VZW, Stetigkeit und evtl. Monotonie argumentieren. (Schnittpunkt mit y-Achse: f(0) berechnen) 5. Extrempunkte / Monotonie notwendig: f'(x ₀) = 0; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von f' (vgl. Monotonie unten) bzw. f''(x ₀) ≠ 0; dress Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von - nach + bzw. f''(x ₀) > 0: relatives Minimum ungerade, VZW von + nach – bzw. f''(x ₀) < 0: relatives Minimum gerade, kein VZW: Terrassenstelle danach: y-Werte berechnen (x-Werte in f einsetzen) Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie vom das vas vas en vas vas vas	$\int (x) = \int (x) \int G_1 \operatorname{st} \operatorname{symmetrisch} \operatorname{Zum} \operatorname{Orsprung}$	→ G _f ist nicht symmetrisch zum KS
lim $e^{x} = 0$; lim $e^{x} = \infty$; ,, e^{x} gewinnt gegen jede Potenz'' ausnutzen wenn h(x) gegen $-\infty$ geht für $x \to \infty$ bzw. $x \to -\infty$: waagrechte Asymptote $y = y_0$ 3. Ableitungen Normalerweise genügen zwei. Man sollte immer ausklammern und zusammenfassen! 4. Gemeinsame Punkte mit den Achsen Gleichung f(x) = 0 lösen: Wenn $y_0 = 0$ ist, nutzt man $e^{-x} > 0$ und den Satz vom Nullprodukt, löst also letztlich nur g(x) = 0. Wenn $y_0 = 0$ ist, sit die Gleichung i. A. nicht lösbar; man kann aber mit Grenzverhalten, VZW, Stetigkeit und evtl. Monotonie argumentieren. (Schnittpunkt mit y-Achse: f(0) berechnen) 5. Extrempunkte / Monotonie notwendig: f'(x ₀) = 0; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von f' (vgl. Monotonie unten) bzw. f''(x ₀) ≠ 0; dress Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von - nach + bzw. f''(x ₀) > 0: relatives Minimum ungerade, VZW von + nach – bzw. f''(x ₀) < 0: relatives Minimum gerade, kein VZW: Terrassenstelle danach: y-Werte berechnen (x-Werte in f einsetzen) Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie vom das vas vas en vas vas vas		
lim $e^{x} = 0$; lim $e^{x} = \infty$; ,, e^{x} gewinnt gegen jede Potenz'' ausnutzen wenn h(x) gegen $-\infty$ geht für $x \to \infty$ bzw. $x \to -\infty$: waagrechte Asymptote $y = y_0$ 3. Ableitungen Normalerweise genügen zwei. Man sollte immer ausklammern und zusammenfassen! 4. Gemeinsame Punkte mit den Achsen Gleichung f(x) = 0 lösen: Wenn $y_0 = 0$ ist, nutzt man $e^{-x} > 0$ und den Satz vom Nullprodukt, löst also letztlich nur g(x) = 0. Wenn $y_0 = 0$ ist, sit die Gleichung i. A. nicht lösbar; man kann aber mit Grenzverhalten, VZW, Stetigkeit und evtl. Monotonie argumentieren. (Schnittpunkt mit y-Achse: f(0) berechnen) 5. Extrempunkte / Monotonie notwendig: f'(x ₀) = 0; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von f' (vgl. Monotonie unten) bzw. f''(x ₀) ≠ 0; dress Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von - nach + bzw. f''(x ₀) > 0: relatives Minimum ungerade, VZW von + nach – bzw. f''(x ₀) < 0: relatives Minimum gerade, kein VZW: Terrassenstelle danach: y-Werte berechnen (x-Werte in f einsetzen) Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie vom das vas vas en vas vas vas	2 Vanhaltan fün v. Alexand Asymptote	$\lim_{x \to \infty} x^2 e^{-x} = 1 - \infty$
Potenz" ausnutzen wenn h(x) gegen $-\infty$ geht für $x \to \infty$ bzw. $x \to -\infty$: waagrechte Asymptote $y = y_0$ 3. Ableitungen Normalerweise genügen zwei. Man sollte immer ausklammern und zusammenfassen! 4. Gemeinsame Punkte mit den Achsen Gleichung f(x) = 0 lösen: Wenn $y_0 = 0$ ist, nutzt man $c \to 0$ und den Satz vom Nullprodukt, löst also letztlich nur $g(x) = 0$. Wenn $y_0 \neq 0$ ist, ist die Gleichung i. A. nicht lösbar; man kann aber mit Grenzverhalten, VZW, Stetigkeit und evtl. Monotonie argumentieren. (Schnittpunkt mit y-Achse: f(0) berechnen) S. Extrempunkte / Monotonie notwendig: f'(x ₀) = 0; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von f' (vgl. Monotonie unten) bzw. f''(x ₀) $\neq 0$ relatives Minimum ungerade, VZW von – nach + bzw. f''(x ₀) > 0: relatives Maximum gerade, kein VZW: Terrassenstelle Monotonieintervalle bestimmen: $e^x > 0$ verwenden \Rightarrow das VZ und damit die Monotonie wird vom anderen Monotonieintervalle bestimmen: $e^x > 0$ verwenden \Rightarrow das VZ und damit die Monotonie wird vom anderen Achseltungen f'(x ₀) = ext + x ² e^{-x} · (-1)		$r \rightarrow -\infty$
wenn h(x) gegen $-\infty$ geht für $x \to \infty$ bzw. $x \to -\infty$: waagrechte Asymptote $y = y_0$ 3. Ableitungen Normalerweise genügen zwei. Man sollte immer ausklammern und zusammenfassen! 4. Gemeinsame Punkte mit den Achsen Gleichung f(x) = 0 lösen: Wenn $y_0 = 0$ ist, nutzt man $e^{-x} > 0$ und den Satz vom Nullprodukt, löst also letztlich nur g(x) = 0. Wenn $y_0 = 0$ ist, ist die Gleichung i. A. nicht lösbar; man kann aber mit Grenzverhalten, VZW, Stetigkeit und evtl. Monotonie argumentieren. (Schnittpunkt mit y-Achse: f(0) berechnen) 5. Extrempunkte / Monotonie notwendig: f '(x_0) = 0; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hirreichend: VZW von f ' (vgl. Monotonie unten) bzw. f ''(x_0) \neq 0 relatives Minimum ungerade, VZW von + nach - bzw. f ''(x_0) > 0: relatives Maximum gerade, kein VZW: Terrassenstelle Monotonicintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie view		$\lim_{x \to \infty} x^2 e^{-x} - 1 = -1^+ \qquad (e^{-x} \text{ gewinnt})$
wenn h(x) gegen $-\infty$ geht für $x \to \infty$ bzw. $x \to -\infty$: waagrechte Asymptote $y = y_0$ 3. Ableitungen Normalerweise genügen zwei. Man sollte immer ausklammern und zusammenfassen! 4. Gemeinsame Punkte mit den Achsen Gleichung f(x) = 0 lösen: Wenn $y_0 = 0$ ist, nutzt man $e^{-v} > 0$ und den Satz vom Nullprodukt, löst also letztlich nur $g(x) = 0$. Wenn $y_0 \neq 0$ ist, ist die Gleichung i. A. nicht lösbar; man kann aber mit Grenzverhalten, VZW, Stetigkeit und evtl. Monotonie argumentieren. (Schnittpunkt mit y-Achse: f(0) berechnen) 5. Extrempunkte / Monotonie notwendig: f '(x_0) = 0; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von f ' (vgl. Monotonie unten) bzw. f ''(x_0) $\neq 0$ ungerade, VZW von + nach $=$ bzw. f ''(x_0) $=$ 0: relatives Maximum gerade, kein VZW: Terrassenstelle Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen waagrechte Asymptote: $y = -1$ $f'(x) = 2x e^{-x} + x^2 e^{-x} \cdot (-1)$ $= (2x - x^2) e^{-x}$ $f'''(x) = (2 - 2x) e^{-x} + (2x - x^2) e^{-x} \cdot (-1)$ $= (x^2 - 4x + 2) e^{-x}$ $f'''(x) = (2 - 2x) e^{-x} + (2x - x^2) e^{-x} \cdot (-1)$ $= (x^2 - 4x + 2) e^{-x}$ $f'''(x) = (2 - 2x) e^{-x} + (2x - x^2) e^{-x} \cdot (-1)$ $= (x^2 - 4x + 2) e^{-x}$ $f'''(x) = (2 - 2x) e^{-x} + (2x - x^2) e^{-x} \cdot (-1)$ $= (x^2 - 4x + 2) e^{-x}$ $f'''(x) = (2 - 2x) e^{-x} + (2x - x^2) e^{-x} \cdot (-1)$ $= (x^2 - 4x + 2) e^{-x}$ $f''''(x) = (2 - 2x) e^{-x} + (2x - x^2) e^{-x} \cdot (-1)$ $= (x^2 - 4x + 2) e^{-x}$ $f''''(x) = (2 - 2x) e^{-x} + (2x - x^2) e^{-x} \cdot (-1)$ $= (x^2 - x - 1 = 0$ ist nicht direkt lösbar Grenzverhalten \Rightarrow zwischen $-\infty$ und $+\infty$ hat $f(x)$ einen $VZW \Rightarrow$ es gibt mindestens eine Nullstelle für $x < 0$, weil f stetig ist) $f(0) = -1 \Rightarrow 5_x(0 -1)$ $f''''(x) = (2x - x^2) e^{-x} = 0 \Rightarrow 2x - x^2 = 0$, weil $e^{-x} > 0 \Rightarrow x = 0$, $x = 2x = 0$, weil $e^{-x} > 0 \Rightarrow x = 0$, $x = 2x = 0$, weil $e^{-x} > 0 \Rightarrow x = 0$, $x = 2x = 0$, weil $e^{-x} > 0 \Rightarrow x = 0$, $x = 2x = 0$, weil $e^{-x} > 0$	Potenz" ausnutzen	
waagrechte Asymptote $y = y_0$ 3. Ableitungen Normalerweise genügen zwei. Man sollte immer ausklammern und zusammenfassen! 4. Gemeinsame Punkte mit den Achsen Gleichung f(x) = 0 lösen: Wenn $y_0 = 0$ ist, nutzt man $e^{>0}$ und den Satz vom Nullprodukt, löst also letztlich nur $y_0 = 0$ ist, ist die Gleichung i. A. nicht lösbar; man kann aber mit Grenzverhalten, VZW, Stetigkeit und evtl. Monotonie argumentieren. (Schnittpunkt mit y-Achse: f(0) berechnen) 5. Extrempunkte / Monotonie notwendig: f '(x ₀) = 0; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von f ' (vgl. Monotonie unten) bzw. f ''(x ₀) ≠ 0 crelatives Maximum gerade, VZW von + nach − bzw. f ''(x ₀) > 0: relatives Maximum gerade, kein VZW: Terrassenstelle Monotonieintervalle bestimmen: $e^{x} > 0$ verwenden das VZ und damit die Monotonie wird vom anderen Monotonieintervalle bestimmen: $e^{x} > 0$ verwenden das VZ und damit die Monotonie wird vom anderen	want have a control of the second of the sec	
Normalerweise genügen zwei. Man sollte immer ausklammern und zusammenfassen! 4. Gemeinsame Punkte mit den Achsen Gleichung $f(x) = 0$ lösen: Wenn $y_0 = 0$ ist, nutzt man e $\cdots > 0$ und den Satz vom Nullprodukt, löst also letztlich nur $g(x) = 0$. Wenn $y_0 \neq 0$ ist, ist die Gleichung i. A. nicht lösbar; man kann aber mit Grenzverhalten, VZW, Stetigkeit und evtl. Monotonie argumentieren. (Schnittpunkt mit y-Achse: $f(0)$ berechnen) 5. Extrempunkte / Monotonie notwendig: $f'(x_0) = 0$; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von f' (vgl. Monotonie unten) bzw. $f''(x_0) \neq 0$ ungerade, VZW von + nach − bzw. $f''(x_0) > 0$: relatives Minimum ungerade, VZW: Terrassenstelle danach: y-Werte berechnen (x-Werte in f einsetzen) Monotonieintervalle bestimmen: $e^x > 0$ verwenden \Rightarrow das VZ und damit die Monotonie wird vom anderen $f'(x) = 2x e^{-x} + x^2 e^{-x} \cdot (-1)$ $= (2x - x^2) e^{-x}$ $f''(x) = (2 - 2x) e^{-x} + (2x - x^2) e^{-x} \cdot (-1)$ $= (x^2 - 4x + 2) e^{-x}$ $f''(x) = (2 - 2x) e^{-x} + (2x - x^2) e^{-x} \cdot (-1)$ $= (x^2 - 4x + 2) e^{-x}$ $f''(x) = (2 - 2x) e^{-x} + (2x - x^2) e^{-x} \cdot (-1)$ $= (x^2 - 4x + 2) e^{-x}$ $f''(x) = (2 - 2x) e^{-x} + (2x - x^2) e^{-x} \cdot (-1)$ $= (x^2 - 4x + 2) e^{-x}$ $f''(x) = (2 - 2x) e^{-x} + (2x - x^2) e^{-x} \cdot (-1)$ $= (x^2 - 4x + 2) e^{-x}$ $f''(x) = (2 - 2x) e^{-x} + (2x - x^2) e^{-x} \cdot (-1)$ $= (x^2 - 4x + 2) e^{-x}$ $f''(x) = (2 - 2x) e^{-x} + x^2 e^{-x} \cdot (-1)$ $= (x^2 - 4x + 2) e^{-x}$ $f''(x) = (2 - 2x) e^{-x} + x^2 e^{-x} \cdot (-1)$ $= (x^2 - 4x + 2) e^{-x}$ $f''(x) = (2 - 2x) e^{-x} + x^2 e^{-x} \cdot (-1)$ $= (x^2 - 4x + 2) e^{-x}$ $f''(x) = (2x - x^2) e^{-x} + x^2 e^{-x} \cdot (-1)$ $= (x^2 - 4x + 2) e^{-x}$ $f''(x) = (2x - x^2) e^{-x} + x^2 e^{-x} \cdot (-1)$ $f''(x) = (2x - x^2) e^{-x} + x^2 e^{-x} \cdot (-1)$ $f''(x) = (2x - x^2) e^{-x} + x^2 e^{-x} \cdot (-1)$ $f''(x) = (2x - x^2) e^{-x} + x^2 e^{-x} \cdot (-1)$ $f''(x) = (2x - x^2) e^{-x} + x^2 e^{-x} \cdot (-1)$ $f''(x) = (2x - x^2) e^{-x} + x^2 e^{-x} \cdot (-1)$ $f''(x) = (2x - x^2) e^{-$		\rightarrow waagrechte Asymptote: $y = -1$
Normalerweise genügen zwei. Man sollte immer ausklammern und zusammenfassen! $ = (2x - x^2) e^{-x} $ $f''(x) = (2 - 2x) e^{-x} + (2x - x^2) e^{-x} \cdot (-1) $ $= (x^2 - 4x + 2) e^{-x} $ $ = (x^2 - 4x $		$f'(y) = 2y \rho^{-x} + y^2 \rho^{-x} \cdot (-1)$
ausklammern und zusammenfassen! 4. Gemeinsame Punkte mit den Achsen Gleichung $f(x) = 0$ lösen: Wenn $y_0 = 0$ ist, nutzt man e $\cdots > 0$ und den Satz vom Nullprodukt, löst also letztlich nur $g(x) = 0$. Wenn $y_0 \neq 0$ ist, ist die Gleichung i. A. nicht lösbar; man kann aber mit Grenzverhalten, VZW, Stetigkeit und evtl. Monotonie argumentieren. (Schnittpunkt mit y-Achse: $f(0)$ berechnen) 5. Extrempunkte / Monotonie motwendig: $f'(x_0) = 0$; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von f' (vgl. Monotonie unten) bzw. $f''(x_0) \neq 0$ ungerade, VZW von + nach + bzw. $f''(x_0) > 0$: relatives Minimum ungerade, VZW von + nach - bzw. $f''(x_0) < 0$: relatives Maximum gerade, kein VZW: Terrassenstelle Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen f''(x) = (2 - 2x) $e^{-x} + (2x - x^2) e^{-x} \cdot (-1)$ $= (x^2 - 4x + 2) e^{-x}$ $x^2 e^{-x} - 1 = 0$ ist nicht direkt lösbar Grenzverhalten → zwischen -∞ und +∞ hat $f(x)$ einen VZW → es gibt mindestens eine Nullstelle (weil f stetig ist) f(0) = -1 → Sy(0 -1) (→ VZW zwischen -∞ und 0 → mindestens eine Nullstelle für x < 0, weil f stetig) (2x - x²) $e^{-x} - 1 = 0$ ist nicht direkt lösbar Grenzverhalten → zwischen -∞ und +∞ hat $f(x)$ einen VZW → es gibt mindestens eine Nullstelle (weil f stetig ist) (2x - x²) $e^{-x} - 1 = 0$ ist nicht direkt lösbar Grenzverhalten → zwischen -∞ und +∞ hat $f(x)$ einen VZW → es gibt mindestens eine Nullstelle (weil f stetig ist) (2x - x²) $e^{-x} - 1 = 0$ ist nicht direkt lösbar Grenzverhalten → zwischen -∞ und +∞ hat $f(x)$ einen VZW → $f(x) = x + x + x + x + x + x + x + x + x + x$		
4. Gemeinsame Punkte mit den Achsen Gleichung $f(x) = 0$ lösen: Wenn $y_0 = 0$ ist, nutzt man e $\cdots > 0$ und den Satz vom Nullprodukt, löst also letztlich nur $g(x) = 0$. Wenn $y_0 \neq 0$ ist, ist die Gleichung i. A. nicht lösbar; man kann aber mit Grenzverhalten, VZW, Stetigkeit und evtl. Monotonie argumentieren. (Schnittpunkt mit y-Achse: $f(0)$ berechnen) 5. Extrempunkte / Monotonie notwendig: $f'(x_0) = 0$; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von f' (vgl. Monotonie unten) bzw. $f''(x_0) \neq 0$ ungerade, VZW von - nach + bzw. $f'''(x_0) > 0$: relatives Maximum gerade, kein VZW: Terrassenstelle Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen (x) = (x)		
4. Gemeinsame Punkte mit den Achsen Gleichung $f(x) = 0$ lösen: Wenn $y_0 = 0$ ist, nutzt man $e^{} > 0$ und den Satz vom Nullprodukt, löst also letztlich nur $g(x) = 0$. Wenn $y_0 \neq 0$ ist, ist die Gleichung i. A. nicht lösbar; man kann aber mit Grenzverhalten, VZW, Stetigkeit und evtl. Monotonie argumentieren. (Schnittpunkt mit y-Achse: $f(0)$ berechnen) 5. Extrempunkte / Monotonie notwendig: $f'(x_0) = 0$; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von $f'(y_0)$. Monotonie unten) bzw. $f''(x_0) \neq 0$ ungerade, VZW von - nach + bzw. $f''(x_0) > 0$: relatives Minimum ungerade, VZW von + nach - bzw. $f''(x_0) < 0$: relatives Maximum gerade, kein VZW: Terrassenstelle Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen $x^2 e^{-x} - 1 = 0$ ist nicht direkt lösbar Grenzverhalten → zwischen -∞ und +∞ hat $f(x)$ einen VZW → es gibt mindestens eine Nullstelle (weil f stetig ist) $(2x - x^2) e^{-x} = 0 \rightarrow 2x - x^2 = 0$, weil $e^{-x} > 0 \rightarrow x$ (2 - x) = 0 → x₁ = 0; x₂ = 2 $f''(0) = 2 > 0 \rightarrow rel$. Minimum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Minimum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < 0 \rightarrow rel$. Maximum $f'''(2) = -2 e^{-2} < $		
Gleichung $f(x) = 0$ lösen: Wenn $y_0 = 0$ ist, nutzt man $e^{-c} > 0$ und den Satz vom Nullprodukt, löst also letztlich nur $g(x) = 0$. Wenn $y_0 \neq 0$ ist, ist die Gleichung i. A. nicht lösbar; man kann aber mit Grenzverhalten, VZW, Stetigkeit und evtl. Monotonie argumentieren. (Schnittpunkt mit y-Achse: $f(0)$ berechnen) (Schnittpunkt mit y-Achse: $f(0)$ berechnen) 5. Extrempunkte / Monotonie notwendig: $f'(x_0) = 0$; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von $f'(x_0) \neq 0$ ungerade, VZW von $f'(x_0) \neq 0$ relatives Minimum ungerade, VZW von $f'(x_0) = 0$: relatives Maximum gerade, kein VZW: Terrassenstelle Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen Menotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen	4. Gemeinsame Punkte mit den Achsen	(/ •
Wenn $y_0 = 0$ ist, nutzt man $e^{-c} > 0$ und den Satz vom Nullprodukt, löst also letztlich nur $g(x) = 0$. Wenn $y_0 \neq 0$ ist, ist die Gleichung i. A. nicht lösbar; man kann aber mit Grenzverhalten, VZW, Stetigkeit und evtl. Monotonie argumentieren. (Schnittpunkt mit y-Achse: $f(0)$ berechnen) (Schnittpunkt mit y-Achse: $f(0)$ berechnen) 5. Extrempunkte / Monotonie notwendig: $f'(x_0) = 0$; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von f' (vgl. Monotonie unten) bzw. $f''(x_0) \neq 0$ ungerade, VZW von – nach + bzw. $f'''(x_0) > 0$: relatives Maximum gerade, VZW von + nach – bzw. $f'''(x_0) < 0$: relatives Maximum gerade, vZW: Terrassenstelle danach: y-Werte berechnen (x-Werte in f einsetzen) Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen		$x^2 e^{-x} - 1 = 0$ ist nicht direkt lösbar
Wenn $y_0 \neq 0$ ist, ist die Gleichung i. A. nicht lösbar; man kann aber mit Grenzverhalten, VZW, Stetigkeit und evtl. Monotonie argumentieren. (Schnittpunkt mit y-Achse: f(0) berechnen) 5. Extrempunkte / Monotonie notwendig: f'(x_0) = 0; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von f' (vgl. Monotonie unten) bzw. f''(x_0) $\neq 0$ ungerade, VZW von – nach + bzw. f''(x_0) > 0 : relatives Maximum ungerade, VZW: Terrassenstelle danach: y-Werte berechnen (x-Werte in f einsetzen) Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen		
man kann aber mit Grenzverhalten, VZW, Stetigkeit und evtl. Monotonie argumentieren. (Schnittpunkt mit y-Achse: $f(0)$ berechnen) (Schnittpunkt mit y-Achse: $f(0)$ berechnen (Schnittpunkten) (Sch	Nullprodukt, löst also letztlich nur $g(x) = 0$.	Grenzverhalten \rightarrow zwischen $-\infty$ und $+\infty$ hat $f(x)$
und evtl. Monotonie argumentieren. (Schnittpunkt mit y-Achse: $f(0)$ berechnen) 5. Extrempunkte / Monotonie notwendig: $f'(x_0) = 0$; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von $f'(x_0) \neq 0$ ungerade, VZW von – nach + bzw. $f''(x_0) > 0$: relatives Minimum ungerade, VZW von + nach – bzw. $f''(x_0) < 0$: relatives Maximum gerade, kein VZW: Terrassenstelle danach: y-Werte berechnen (x-Werte in f einsetzen) Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen $f(0) = -1 \Rightarrow S_y(0 -1)$ $(2x - x^2) e^{-x} = 0 \Rightarrow 2x - x^2 = 0$, weil $e^{-x} > 0$ $\Rightarrow x (2 - x) = 0 \Rightarrow x_1 = 0$; $x_2 = 2$ $f''(0) = 2 > 0 \Rightarrow rel$. Minimum (oder Monotonie verwenden, s. u.) $f''(2) = -2 e^{-2} < 0 \Rightarrow rel$. Maximum (oder Monotonie verwenden, s. u.) $f(0) = -1 \Rightarrow TiP(0 -1) = S_y$ $f(2) = \frac{4}{e^2} - 1 \approx -0.46 \Rightarrow HoP(2 -0.46)$		
(Schnittpunkt mit y-Achse: f(0) berechnen) $f(0) = -1 \Rightarrow Sy(0 -1)$ ($\Rightarrow VZW \text{ zwischen } -\infty \text{ und } 0 \Rightarrow \text{ mindestens eine}$ Nullstelle für $x < 0$, weil f stetig) 5. Extrempunkte / Monotonie notwendig: f '(x ₀) = 0; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von f ' (vgl. Monotonie unten) bzw. f ''(x ₀) $\neq 0$ ungerade, VZW von – nach + bzw. f ''(x ₀) > 0: relatives Minimum ungerade, VZW von + nach – bzw. f ''(x ₀) < 0: relatives Maximum gerade, kein VZW: Terrassenstelle Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen $e^{-x} > 0 \Rightarrow VZ \text{ von } f = VZ \text{ von } 2x - x^2$ Skizze \Rightarrow f ' < 0 für $x < 0$ oder $x > 2$; f ' > 0 für $0 < x < 2 \Rightarrow 6$ seist smf in $1 -\infty$ 01 und [2] cof	_	(weil f stetig ist)
(Schnittpunkt mit y-Achse: f(0) berechnen) 5. Extrempunkte / Monotonie notwendig: f'(x ₀) = 0; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von f' (vgl. Monotonie unten) bzw. f''(x ₀) ≠ 0 ungerade, VZW von - nach + bzw. f''(x ₀) > 0: relatives Minimum ungerade, VZW von + nach - bzw. f''(x ₀) < 0: relatives Maximum gerade, kein VZW: Terrassenstelle danach: y-Werte berechnen (x-Werte in f einsetzen) Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen A vzw zwischen -∞ und 0 → mindestens eine Nullstelle für x < 0, weil f stetig) (2x - x²) $e^{-x} = 0 → 2x - x² = 0$, weil $e^{-x} > 0$ → x (2 - x) = 0 → x ₁ = 0; x ₂ = 2 f''(0) = 2 > 0 → rel. Minimum (oder Monotonie verwenden, s. u.) f(0) = -1 → TiP(0 -1) = S _y f(2) = $\frac{4}{e^2} - 1 \approx -0.46 → HoP(2 -0.46)$ Grist smf in 1 → co: 0 lund [2: cof] f''(2) = -2 e^{-2} < 0 → VZ von f' = VZ von 2x - x² Skizze → f' < 0 für x < 0 oder x > 2; f' > 0 für f''(2) = -2 e^{-2} < 0 → rel. Maximum (oder Monotonie verwenden, s. u.) f''(2) = -2 e^{-2} < 0 → rel. Maximum (oder Monotonie verwenden, s. u.)	und evtl. Monotonie argumentieren.	(a) 1 3 a (a) 1)
Nullstelle für $x < 0$, weil f stetig) 5. Extrempunkte / Monotonie notwendig: $f'(x_0) = 0$; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von $f''(x_0) \neq 0$ ungerade, VZW von – nach + bzw. $f'''(x_0) > 0$: relatives Minimum ungerade, VZW von + nach – bzw. $f'''(x_0) < 0$: relatives Maximum gerade, kein VZW: Terrassenstelle danach: y-Werte berechnen (x-Werte in f einsetzen) Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen Nullstelle für $x < 0$, weil f stetig) $(2x - x^2) e^{-x} = 0 \implies 2x - x^2 = 0$, weil $e^{-x} > 0 \implies x (2 - x) = 0 \implies x_1 = 0$; $x_2 = 2$ $f'''(0) = 2 > 0 \implies rel.$ Minimum (oder Monotonie verwenden, s. u.) $f'''(2) = -2 e^{-2} < 0 \implies rel.$ Maximum (oder Monotonie verwenden, s. u.) $f'''(2) = -2 e^{-2} < 0 \implies rel.$ Maximum (oder Monotonie verwenden, s. u.) $f'''(2) = -2 e^{-2} < 0 \implies rel.$ Maximum (oder Monotonie verwenden, s. u.)	(C-1	
5. Extrempunkte / Monotonie notwendig: $f'(x_0) = 0$; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von f' (vgl. Monotonie unten) bzw. $f''(x_0) \neq 0$ ungerade, VZW von – nach + bzw. $f''(x_0) > 0$: relatives Minimum ungerade, VZW von + nach – bzw. $f''(x_0) < 0$: relatives Maximum gerade, kein VZW: Terrassenstelle danach: y-Werte berechnen (x-Werte in f einsetzen) Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen described $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 0$ → $\frac{1}{2} = 0$, weil $e^{-x} > 0$ → $\frac{1}{2} = 0$, weil $e^{-x} > 0$ → $\frac{1}{2} = 0$ → $\frac{1}{2} = 0$, weil $e^{-x} > 0$ → $\frac{1}{2} = 0$ →	(Schnittpunkt mit y-Achse: I(0) berechnen)	
notwendig: f '(x ₀) = 0; diese Gleichung kann immer mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von f ' (vgl. Monotonie unten) bzw. f ''(x ₀) ≠ 0	5 Extrempunkto / Monetonia	Numstene full $x < 0$, well I sterig) $(2x + x^2) e^{-x} = 0 \implies 2x + x^2 = 0 \text{ weil } e^{-x} < 0$
mit dem Satz vom Nullprodukt gelöst werden (s. 4.) hinreichend: VZW von f' (vgl. Monotonie unten) bzw. f''(x ₀) \neq 0 ungerade, VZW von – nach + bzw. f''(x ₀) > 0: relatives Minimum ungerade, VZW von + nach – bzw. f''(x ₀) < 0: relatives Maximum gerade, kein VZW: Terrassenstelle danach: y-Werte berechnen (x-Werte in f einsetzen) Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen $e^{-x} > 0$ VZ von f' = VZ von 2x – x ² $Skizze \Rightarrow$ f' < 0 für x < 0 oder x > 2; f' > 0 für $0 < x < 2$ Crief smf in 1 – or: 01 und [2]: of e^{-x} of e^{-		
hinreichend: VZW von f' (vgl. Monotonie unten) bzw. f''(x ₀) ≠ 0 ungerade, VZW von – nach + bzw. f''(x ₀) > 0: relatives Minimum ungerade, VZW von + nach – bzw. f''(x ₀) < 0: relatives Maximum gerade, kein VZW: Terrassenstelle danach: y-Werte berechnen (x-Werte in f einsetzen) Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen f''(0) = 2 > 0 → rel. Minimum f''(2) = -2 $e^{-2} < 0$ → rel. Maximum (oder Monotonie verwenden, s. u.) $f(0) = -1 → TiP(0 -1) = S_y$ $f(2) = \frac{4}{e^2} - 1 \approx -0.46 → HoP(2 -0.46)$		
bzw. f ''(x ₀) \neq 0 ungerade, VZW von – nach + bzw. f ''(x ₀) > 0: relatives Minimum ungerade, VZW von + nach – bzw. f ''(x ₀) < 0: relatives Maximum gerade, kein VZW: Terrassenstelle $f''(2) = -2 e^{-2} < 0 \implies \text{rel. Maximum}$ (oder Monotonie verwenden, s. u.) $f(0) = -1 \implies \text{TiP}(0 -1) = S_y$ $f(2) = \frac{4}{e^2} - 1 \approx -0.46 \implies \text{HoP}(2 -0.46)$ Monotonie intervalle bestimmen: $e^x > 0$ verwenden \Rightarrow das VZ und damit die Monotonie wird vom anderen $e^x > 0 \implies \text{VZ von } f' = \text{VZ von } 2x - x^2$ Skizze \Rightarrow f' < 0 für x < 0 oder x > 2; f' > 0 für $0 < x < 2 \implies \text{Griet smf in } 1 - \infty$; 01 und 12; ∞ 1	· · · · · · · · · · · · · · · · · ·	$f''(0) = 2 > 0 \rightarrow rel. Minimum$
ungerade, VZW von – nach + bzw. f ''(x ₀) > 0: relatives Minimum ungerade, VZW von + nach – bzw. f ''(x ₀) < 0: relatives Maximum gerade, kein VZW: Terrassenstelle $f(0) = -1 \Rightarrow \text{TiP}(0 -1) = S_y$ f(2) = $\frac{4}{e^2} - 1 \approx -0.46 \Rightarrow \text{HoP}(2 -0.46)$ danach: y-Werte berechnen (x-Werte in f einsetzen) Monotonieintervalle bestimmen: $e^x > 0$ verwenden \Rightarrow das VZ und damit die Monotonie wird vom anderen \Rightarrow Gegigt smf in $1-\infty$: 01 und 12: ∞ 1		
ungerade, VZW von + nach – bzw. f ''(x ₀) < 0: relatives Maximum gerade, kein VZW: Terrassenstelle $f(0) = -1 \Rightarrow TiP(0 -1) = S_y$ $f(2) = \frac{4}{e^2} - 1 \approx -0.46 \Rightarrow HoP(2 -0.46)$ Monotonieintervalle bestimmen: $e^x > 0$ verwenden \Rightarrow das VZ und damit die Monotonie wird vom anderen $e^x > 0 \Rightarrow VZ \text{ von } f' = VZ \text{ von } 2x - x^2$ $Skizze \Rightarrow f' < 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ oder } x > 2$	ungerade, VZW von – nach + bzw. f " $(x_0) > 0$:	(oder Monotonie verwenden, s. u.)
relatives Maximum gerade, kein VZW: Terrassenstelle $f(0) = -1 \Rightarrow TiP(0 -1) = S_y$ $f(2) = \frac{4}{e^2} - 1 \approx -0.46 \Rightarrow HoP(2 -0.46)$ Monotonieintervalle bestimmen: $e^x > 0$ verwenden \Rightarrow das VZ und damit die Monotonie wird vom anderen $e^x > 0 \Rightarrow VZ \text{ von } f' = VZ \text{ von } 2x - x^2$ $Skizze \Rightarrow f' < 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ oder } x > 2; f' > 0 \text{ für } x < 0 \text{ oder } x > 2; f' > 0 \text{ oder } x > 2;$		
gerade, kein VZW: Terrassenstelle danach: y-Werte berechnen (x-Werte in f einsetzen) Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen das VZ und damit die Monotonie wird vom anderen $f(2) = \frac{4}{e^2} - 1 \approx -0.46 \Rightarrow \text{HoP}(2 -0.46)$ $e^{-x} > 0 \Rightarrow \text{VZ von f } `` = \text{VZ von } 2x - x^2$ $Skizze \Rightarrow f `` < 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ für } x < 0 \text{ oder } x > 2; f `` > 0 \text{ oder } x > 2; f `` > 0 \text{ oder } x > 2; f$, ,	
danach: y-Werte berechnen (x-Werte in f einsetzen) Monotonieintervalle bestimmen: $e^x > 0$ verwenden das VZ und damit die Monotonie wird vom anderen $e^{-x} > 0 \Rightarrow VZ$ von $f' = VZ$ von $2x - x^2$ $Skizze \Rightarrow f' < 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 0$; $f' > 0$ für		
Monotonie intervalle bestimmen: $e^x > 0$ verwenden \Rightarrow das VZ und damit die Monotonie wird vom anderen $e^x > 0$ verwenden \Rightarrow $e^{-x} > 0 \Rightarrow VZ$ von $f' = VZ$ von $2x - x^2$ $Skizze \Rightarrow f' < 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 0$	gerade, kein VZW: Terrassenstelle	$f(2) = \frac{4}{\rho^2} - 1 \approx -0.46 \Rightarrow \text{HoP}(2 -0.46)$
Monotonie intervalle bestimmen: $e^x > 0$ verwenden \Rightarrow das VZ und damit die Monotonie wird vom anderen $e^x > 0$ verwenden \Rightarrow $e^{-x} > 0 \Rightarrow VZ$ von $f' = VZ$ von $2x - x^2$ $Skizze \Rightarrow f' < 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 0$	danach: v-Werte herechnen (v. Werte in f. eincetzen)	-
Monotonieintervalle bestimmen: $e^x > 0$ verwenden \rightarrow das VZ und damit die Monotonie wird vom anderen \Rightarrow $Skizze \Rightarrow f' < 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 2$; $f' > 0$ für $x < 0$ oder $x > 0$ oder $x > 2$; $x < 0$ oder $x > 0$ oder $x >$	danaon. y-werte bereemmen (x-werte in remsetzen)	_
das VZ und damit die Monotonie wird vom anderen $ Skizze \rightarrow 1^{\circ} < 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x < 0$ oder $x > 2$; $1^{\circ} > 0$ für $x > 0$ oder $x > 2$; $1^{\circ} > 0$ für $x > 0$ oder $x > 2$; $1^{\circ} > 0$ für $x > 0$ oder $x > 0$ oder $x > 0$	Monotonieintervalle bestimmen: $e^x > 0$ verwenden	1
$ 10 < v < 7 \implies (\text{figure 1} \text{ in } 1 - \text{co}) \text{ (I) } \text{ und } 12 \cdot \text{col}$		· · · · · · · · · · · · · · · · · · ·
Fraktor destinini: dessen vz. aus Skizze destininen	Faktor bestimmt; dessen VZ aus Skizze bestimmen	
sms in [0;2]		sms in [0;2]
6. Wendepunkte / Krümmung $(x^2 - 4x + 2)e^{-x} = 0 \implies x^2 - 4x + 2 = 0$, weil $e^{-x} > 0$	6. Wendepunkte / Krümmung	$(x^2 - 4x + 2)e^{-x} = 0 \implies x^2 - 4x + 2 = 0$, weil $e^{-x} > 0$
<u>notwendig:</u> f " $(x_0) = 0$; diese Gleichung kann immer $\Rightarrow x_{1,2} = 2 \pm \sqrt{2} \Rightarrow x_1 \approx 0.59$; $x_2 \approx 3.41$		→ $x_{1,2} = 2 \pm \sqrt{2}$ → $x_1 \approx 0.59$; $x_2 \approx 3.41$
mit dem Satz vom Nullprodukt gelöst werden (s. 4.) jeweils einfache Lösungen → VZW von f "	± • • • • • • • • • • • • • • • • • • •	jeweils einfache Lösungen → VZW von f "
hinreichend: VZW von f'' (Vielfachheiten!) → Wendestellen	·	→ Wendestellen
$(\text{ oder } f'''(x_0) \neq 0)$	(oder $f'''(x_0) \neq 0$)	
$f(2-\sqrt{2}) = \dots = (6-2\sqrt{2})e^{-2+\sqrt{2}}-1 \approx -0.81$	danach v Worte harachman (v Worte in Cainacteur)	$ f(2 - \sqrt{2}) = = (6 - 2\sqrt{2})e^{-2+\sqrt{2}} - 1 \approx -0.81 $
danach: y-Werte berechnen (x-Werte in f einsetzen) \longrightarrow WeP ₁ (0,59 -0,81)	danach. y-weite berechhen (x-werte in 1 einsetzen)	
$f(2+\sqrt{2}) = \dots = (6+2\sqrt{2})e^{-2-\sqrt{2}}-1 \approx -0.62$		$f(2+\sqrt{2}) = \dots = (6+2\sqrt{2})e^{-2-\sqrt{2}} - 1 \approx -0.62$
		\Rightarrow WeP ₂ (3,41 -0,62)

Krümmungsintervalle bestimmen: e ^x > 0 verwenden	$e^{-x} > 0 \implies VZ \text{ von } f \text{ ``} = VZ \text{ von } x^2 - 4x + 2$
→ das VZ und damit die Krümmung wird vom	Skizze \rightarrow f "> 0 für x < 0,59 oder x > 3,41; f " < 0
anderen Faktor bestimmt; dessen VZ aus Skizze	für $0.59 < x < 3.41 \rightarrow G_f$ ist linksgerümmt in
bestimmen	$]-\infty$; 0,59] und $[3,41; \infty[$, rechtsgekrümmt in
	[0,59;3,41]
7. Graph	siehe unten
Alle bisherigen Ergebnisse verwenden; evtl. Werte-	

