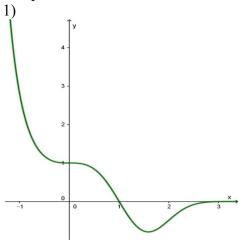
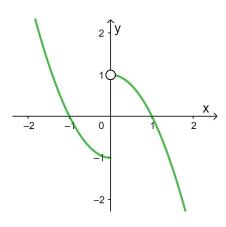
Differenzierbarkeit

Eine Funktion f heißt <u>differenzierbar</u> bei $x_0 \in D_f$, wenn sie dort eine Ableitung hat, man also eindeutig eine Tangentensteigung angeben kann. Rechnerisch bedeutet dies, dass der Grenzwert $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$ existieren muss.

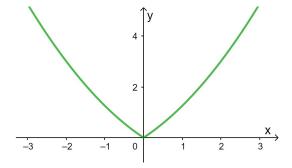
Beispiele:



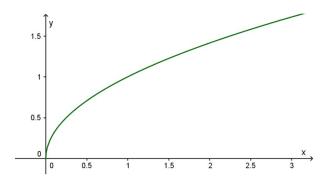
2) "Sprung":



3) ,,Knick": (Bsp.: $f(x) = 0.25x^2 + |x|$)



4) "Steigung ∞ ": (Bsp.: $f(x) = \sqrt{x}$)



Anmerkung: Beispiel 2 zeigt den allgemeinen Satz: Ist eine Funktion f an einer Stelle $x_0 \in D_f$ nicht stetig, so ist sie dort auch nicht differenzierbar. Genauer bespricht man die Differenzierbarkeit im Additum der 12. Klasse Technik.

Lösungen:

- 1) überall differenzierbar
- 3) nicht differenzierbar bei $x_0 = 0$ (keine eindeutige Tangente existiert), ansonsten überall differenzierbar
- 2) nicht differenzierbar bei $x_0 = 0$ (keine eindeutige Tangente existiert), ansonsten überall differenzierbar
- 4) nicht diff.bar bei $x_0 = 0$ (eindeutige Tangente existiert, aber: senkrecht, also Steigung ∞), ansonsten überall differenzierbar