IV.1 Zufallsgrößen und Wahrscheinlichkeitsverteilungen

a) Zufallsgrößen

Übungsblatt:

1) {16; 25; 34; 43; 52; 61} bzw. {26; 34; 43; 62}

2) a) {4}							d) {6}	e) {}	f) Ω
ω	1	2	3	4	5	6			
$x = X(\omega)$	1	4	9	16	25	36			

3) b) {Anfang, schwer} bzw. {Aller, Anfang} bzw. {ist}

a)

ω	Aller	Anfang	ist	schwer
X(\omega)	5	6	3	6
Υ(ω)	2	2	1	1
Z(\omega)	3	4	2	5

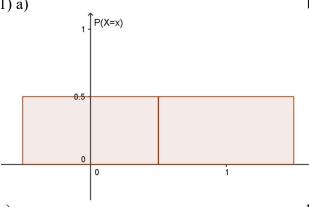
4) b) {ABC, ACB} bzw. {BAC, CAB} bzw. {BCA, CBA} bzw. Ω

a)

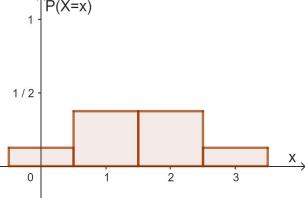
ω	ABC	ACB	BAC	CAB	BCA	CBA
X(\omega)	2	2	1	1	-3	-3

5) a) {15; 51} b) {} c) {13, 31}

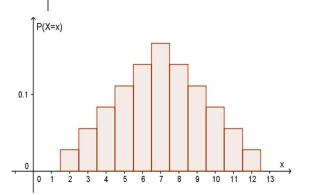
ω	12	13	14	15	16	21	23	24	25	26
Χ(ω)	1,5	2	2,5	3	3,5	1,5	2,5	3	3,5	4
Υ(ω)	2	3	4	5	6	2	3	4	5	6

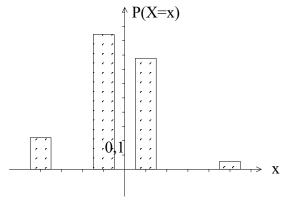

31	32	34	35	36	41	42	43	45	46
2	2,5	3,5	4	4,5	2,5	3	3,5	4,5	5
3	3	4	5	6	4	4	4	5	6

51	52	53	54	56	61	62	63	64	65
3	3,5	4	4,5	5,5	3,5	4	4,5	5	5,5
5	5	5	5	6	6	6	6	6	6


b) Wahrscheinlichkeitsverteilungen

Übungsblatt:



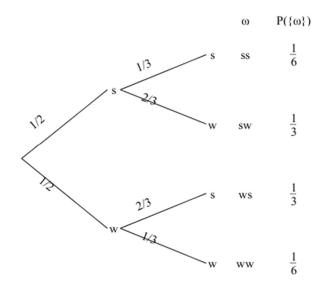

2	١
_	J

X	5	1	-1	-4
P(X=x)	1	14	17	4
$\Gamma(\Lambda - X)$	36	36	36	36

$$P(X<5) = \frac{14}{36} + \frac{17}{36} + \frac{4}{36} = \frac{35}{36} = F(4)$$
bzw. = 1 - P(X \ge 5)

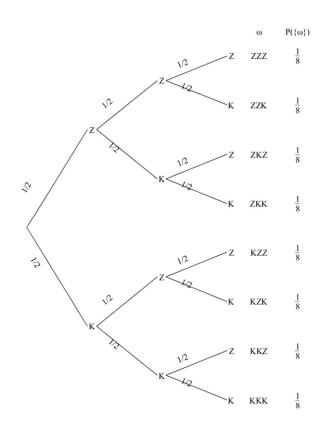
bzw. =
$$1 - P(X \ge 5)$$

$$P(-1 < X \le 5) = \frac{14}{36} + \frac{1}{36} = \frac{5}{12} = F(5) - F(-1)$$

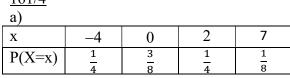


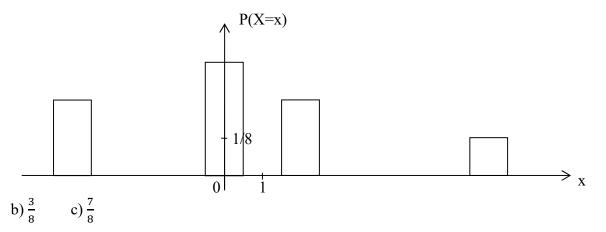
3)
$$P(,Gewinn'') = \frac{2}{9}$$
; $P(,Verlust'') = \frac{1}{9}$

4)


4)							
X	0	1	2	3	4	5	6
P(X=x)	0	5c	8c	9c	8c	5c	0

$$0 + 5c + 8c + 9c + 8c + 5c + 0 = 1 \implies c = \frac{1}{35}$$



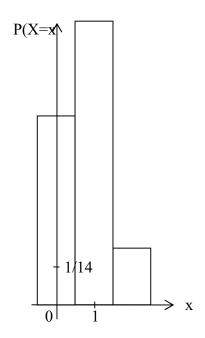

b)				c) $\frac{5}{6}$
X	-5	0,5	4	
P(X=x)	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$	

161/2 a)

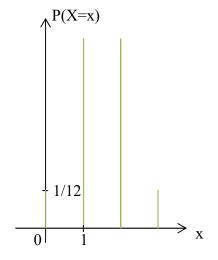
b)	
b) X -1 -0,5 2	
$\begin{array}{c ccccc} X & -1 & -0.5 & 2 \\ \hline P(X=x) & \frac{3}{8} & \frac{3}{8} & \frac{1}{4} \\ \end{array}$	
$c)\frac{3}{4}$	
$(6)\frac{7}{4}$	
161/3	
161/3 a)	
x -1 1 4	
$P(X=x)$ $\frac{3}{4}$ $\frac{3}{16}$ $\frac{1}{16}$	
b)	
P(X=x)	$P(X=x) \uparrow$
1/8	- 1/8
0 1 X	$0 \mid 1 \mid X$
	•
$\frac{161/4}{3}$	

161/5 a)

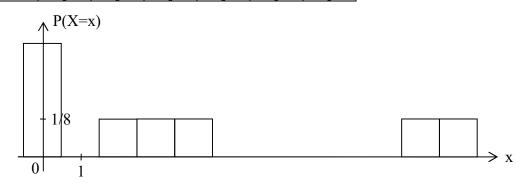
a)				
X	1	2	3	4
P(X=x)	0,5	0,3	0,1	0,1


b) Die Urne muss 5 Kugeln enthalten, die mit 1 beschriftet sind, 3 Kugeln mit 2 und je eine mit 3 bzw. 4.

161/6


Die Summe der Wahrscheinlichkeiten ist nicht gleich 1; wähle z. B. stattdessen P(X=0) = 0,2. Die erste Spalte ist unnötig: Zufallswerte, deren Wahrscheinlichkeit gleich 0 ist, müssen nicht angegeben werden.

<u>178/1</u>	(vgl. 13. Klasse 230/1)
a)	


X	0	1	2
P(X=x)	10	15	3
1 (21 A)	28	28	28

<u>178/2</u>	(vgl. 13. Klasse 230/2)				
X	0	1	2	3	
P(X=x)	1 12	5	5	1 12	

<u>178/3</u>	(vgl.	(vgl. 13. Klasse 230/3)					
X	0	2	3	4	10	11	
P(X=x)	3 8	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	

c) speziell: Binomialverteilung

<u>176/2</u> 0,0543 (13. Klasse 228/3 (Ak))

177/11, 176f/1,3,4,5,6ac,7,8a,13, 179/9,10: siehe Lösungen zu Kapitel I

IV.2 Der Erwartungswert

170/1

a)
$$E(X) = \frac{3}{4}$$

b)
$$E(X) = 0$$

c)
$$E(X) = 2.875$$

d)
$$E(X) = -\frac{2}{3}$$

<u>170/2</u>

1,20€

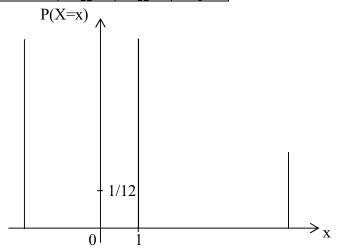
(13. Klasse 231/8)

<u>170/3</u>

a)

b) Einsatz: $\frac{1}{70}$ €, also 1 bis 2 Cent

X	1	0,3	0,2	-0.8	
P(X=x)	$\frac{1}{28}$	5	5	$\frac{1}{4}$	
170/4	T (T Z)	$=4\frac{14}{12}$	(13. Kl	asse 232/	(15)


a)
$$\approx -0.54 \in$$
 b) $\approx -0.54 \in$

b) ≈
$$-0.54$$
 €

<u>170/6</u>

X	-2	1	5
P(X=x)	$\frac{5}{12}$	$\frac{5}{12}$	$\frac{1}{6}$

b) 0,416 € pro Spiel

<u>170/7</u>

$$a = 0.3$$
; $b = 0.1$; $\sigma(X) \approx 1.6047$

<u>178/4</u>

a) bei beiden Spielen: 1 €

<u>178/5</u>

blau: Bleistifte; grün: Kaffeetassen; rot: T-Shirts; 2 € Einsatz

178/7 ≈16,37 € (13. Klasse 231/12)

speziell: Binomialverteilung

177/6 b) ≈ 0.48901

<u>179/8</u> 2,50€ (13. Klasse 231/11)

IV.3 Varianz und Standardabweichung

$$\overline{a}$$
 $Var(X) = \frac{11}{16}$; $\sigma(X) \approx 0.8292$

b)
$$Var(X) = 30; \quad \sigma(X) \approx 5,4772$$

c)
$$Var(X) = 58,609375$$
; $\sigma(X) \approx 7,6557$

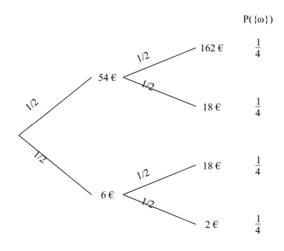
d)
$$Var(X) = \frac{14}{9}$$
; $\sigma(X) \approx 1,2472$

170/4
$$E(X) = 4\frac{1}{12}$$
; $\sigma(X) \approx 2.83$ (13. Klasse 232/15)

$$(d)$$
 a) ≈ 399.71 b) ≈ 788.90 c) ≈ 1209.64

170/7
$$\sigma$$
(X) ≈ 1,6047

170/8


- a) falsch (Die Varianz ist eine Summe mit lauter nicht-negativen Summanden.)
- b) wahr (z. B. könnten alle Zufallswerte negativ sein, dann wäre der Erwartungswert eine Summe mit lauter negativen Summanden)
- c) wahr (siehe Formel, darin kommt der Erwartungswert ja vor!)
- d) falsch (für $Var(X) \le 1$ ist $\sigma(X)$ größer als Var(X))
- e) falsch (z. B. für eine Wahrscheinlichkeitsverteilung mit P(X=a) = 1, $P(X \neq a) = 0$ mit beliebigem $a \in \mathbb{R}$ ist E(X) = a, kann also beliebig groß werden, aber Var(X) ist immer = 0)

$$\frac{178/1}{\text{b}}$$
 (vgl. 13. Klasse 230/1)
b) E(X) = 0.75; σ (X) \approx 0.6339

178/4

b) Bei Spiel 1 ist die Varianz etwa 2,82 €, bei Spiel 2 etwa 7,07 €. Bei Spiel 2 ist die Wahrscheinlichkeit, dass Marie Verlust macht (und die Höhe des möglichen Verlusts), also deutlich höher als bei Spiel 1.

179/11 (vgl. 13. Klasse 231/14)
a) b)
$$E(X) = 50$$
; $\sigma(X) \approx 64,99$

x in €	2	18	162
P(X=x)	1	1 -	1
P(X=X)	4	2	

179/12 (vgl. 13. Klasse 230/7)

X: Kosten pro Woche in € (Annahme: pro Woche tritt jeweils nur eine Art von Störung auf! Ansonsten wird die Aufgabe sehr aufwendig... es wären 32 Ergebnisse zu beachten!)

a)

X	2400	4200	750	7500	1500
P(X=x)	0,15	0,1	0,45	0,1	0,2

b) 2167,50 €

c) 0,45

d) $Var(X) = 4258068,75 €^2$; $\sigma(X) \approx 2063,51 €$

speziell: Binomialverteilung

177/9 ≈ 0,63180 bzw. ≈ 0,94312 bzw. ≈ 0,99648

 $177/10 \approx 0,69268$

<u>179/13</u> (vgl. 13. Klasse 233/26)

a) ≈ 0.80421

b) E(X) = 16; Var(X) = 3.2; $\sigma(X) \approx 1.7889$

c) ≈ 0.59812

180/14 (vgl. 13. Klasse 234/37)

a) zwischen 976 und 984

b) mit dem Ergebnis aus (a): Man sollte die eine Charge zurückweisen, die andere annehmen.

180/15 (vgl. 13. Klasse 234/38)

Diese Aufgabe ist eigentlich unlösbar, denn die Sigma-Regeln stehen nicht im Lehrplan!

- a) A: Anzahl funktionierende: zwischen 24 197 und 24303 (2σ um Erwartungswert)
 - ==> Reparaturkosten für die 697 bis 803 defekte: zwischen 8364,00 € und 9636,00 € mit Einkaufskosten insgesamt: zwischen 630 864 € und 632 136 €

B: ... mit Einkaufskosten insgesamt: zwischen 632 288 € und 633 212 €

==> Entscheidung für A

b) ja, denn 25 000 - 535 = 24465 liegt zwischen 24 456 und 24 544 (2σ um Erwartungswert)

180/16

a) ≈ 0.27623

b) $\approx 0,73098$

IV.4 Beurteilende Statistik: Hypothesentests

191/1 (vgl. 13. Klasse 264/1)

- a) H_0 : p = 0.05 ("Nur 5% der Apfelsinen weisen Mängel auf."); H_1 : p > 0.05 ("Mehr als 5% der Apfelsinen weisen Mängel auf.")
- b) gemeint ist: "...wenn ab 4 faulen Apfelsinen die Nullhypothese abgelehnt wird." $\Rightarrow \alpha$ " ≈ 0.0159 c) $\bar{A} = \{4; ...; 20\}$
- d) Es wird angenommen, dass wirklich nur 5% der Apfelsinen Mängel aufweisen, obwohl es in Wirklichkeit mehr sind. β' ist nicht berechenbar, weil p₁ nicht bekannt ist.

191/2 (vgl. 13. Klasse 264/2)

- a) H₀: p = 0,75 (,,Das neue Medikament ist ebenfalls bei 75% der Anwendungsfälle erfolgreich.")
- H₁: p > 0,75 ("Das neue Medikament ist bei mehr als 75% der Anwendungsfälle erfolgreich.")
- b) $\alpha' \approx 0.14883$
- c) $\bar{A} = \{83; ...; 100\}$; wenn das neue Schmerzmittel bei 83 Patienten wirkt, ist die Nullhypothese also abzulehnen, d. h. man darf davon ausgehen, dass das neue Medikament besser ist als das bisherige.
- d) $\alpha' \approx 0.03763 < 5\%$

191/3

- a) Anzahl der Personen von 100 Befragten, die der Nutzung der Windenergie zustimmen H₀: "30% stimmen der Windenergie zu."
- b) $\alpha' \approx 0.16286$
- c) Man nimmt an, dass wirklich nur 30% der Nutzung der Windenergie zustimmen, obwohl es in Wirklichkeit mehr sind. β ' wird größer, wenn α ' verkleinert wird.
- d) $\bar{A} = \{39; ...; 100\}$; bei 38, die für die Nutzung von Windenergie sind, kann die Nullhypothese auf dem 4%-Niveau also noch nicht abgelehnt werden.

<u>191/4</u> (vgl. 13. Klasse 264/3)

a) X: Anzahl der lebenden Würmer von 20 untersuchten

H₀: ,,90% der Würmer leben."

- b) $\overline{A} = \{0; ...; 15\}$
- c) $\alpha' \approx 0.00935$

191/5 (vgl. 13. Klasse 264/4)

kein unlauterer Wettbewerb ($\alpha' \approx 0.06661 > 5\%$; oder: $42 \notin \overline{A}$)

- 192/6 (vgl. 13. Klasse 264/6)
- a) linksseitiger Signifikanztest
- b) X: "Anzahl der verkäuflichen Früchte von 50 untersuchten"

H₀: ,,90% der Früchte sind verkäuflich."

H₁: "Weniger als 90% der Früchte sind verkäuflich."

- c) $\alpha' \approx 0.12215$
- d) $A = \{41, ..., 50\}$

<u>192/7</u> A = {54; ...; 100} (vgl. 13. Klasse 264/7)

<u>192/8</u> (vgl. 13. Klasse 265/9)

 $\alpha' \approx 0.01633$, es ist also sehr unwahrscheinlich, dass es nur eine zufällige Abweichung war, d. h., er ist wohl wirklich schlechter als behauptet

192/9 a) $\alpha' \approx 0.18002$ b) $\beta' \approx 0.58307$ (vgl. 13. Klasse 265/12)

192/10 (vgl. 13. Klasse 266/13)

- a) X: "Anzahl der Karten von 100, die richtig vorhergesagt wurden"
- b) H₀: ,,25% der Karten werden richtig vorhergesagt."

H₁: "Mehr als 25% der Karten werden richtig vorhergesagt."

c) Fehler 1. Art: Man nimmt an, dass er ein Medium ist (dass er mehr als 25% der Karten richtig vorhersagen kann), obwohl er in Wirklichkeit keins ist.

Fehler 2. Art: Man nimmt an, dass er kein Medium ist (dass er nur 25% der Karten richtig vorhersagen kann), obwohl er in Wirklichkeit ein Medium ist.

- d) Die Nullhypothese wird abgelehnt, wenn er mindestens 36 Karten richtig vorhersagt.
- e) $\beta' \approx 0.00176$

192/11 (vgl. 13. Klasse 266/15)

a) X: "Anzahl der Patienten von 50 getesteten, die mit dem neuen Verfahren geheilt werden"

H₁: "Mehr als 80% der Patienten werden geheilt."

- b) k = 46, d. h. bei mehr als 46 geheilten Patienten von 50 kann die Nullhypothese abgelehnt werden, man kann also davon ausgehen, dass das neue Verfahren tatsächlich mehr heilt als die klassische Therapie.
- c) Die Nullhypothese kann dann nicht abgelehnt werden, man kann also nicht folgern, dass das neue Verfahren tatsächlich mehr Patienten heilt als die klassische Therapie.

193/12 (vgl. 13. Klasse 266/16)

 $\alpha' \approx 0.16368 ==>$ ein Irrtum ist noch recht wahrscheinlich

<u>193/13</u> ab 13 defekten

(vgl. 13. Klasse 266/17)

193/14 (vgl. 13. Klasse 266/18)

 a_1) ≈ 0.03333 a_2) ≈ 0.03333

- a_2) ≈ 0.25029 a_3) ≈ 0.56880
- b_1) 100 b_2) mindestens 15 (n = 1000 nicht im Tafelwerk; was soll der Tipp bringen?!)
- c) Die Nullhypothese (Behauptung der Firma) kann abgelehnt werden, wenn mindestens 10 Filter Ausschuss sind. $\alpha' \approx 0.02819$

193/15

- a) Umfrage durchführen,? Stichprobe möglichst groß und repräsentativ wählen
- b) X: "Anzahl der Smartphone-User von ... befragten, die die Standortübermittlung dauerhaft nutzen"
- c) z. B. n = 100, sinnvoller ist wohl n = 200
- d) Keine allgemeine Lösung möglich, machen Sie mal.

193/16

- a) wahr (immer $A = \{0, ..., k\}$, denn wenn es wirklich nur 0 sein sollten, dann sind es ja offensichtlich nicht mehr als behauptet, also kann die Gegenhypothese nicht stimmen)
- b) falsch; das gilt nur dann, wenn $k \in \bar{A}$ ist
- c) In der Schule ist das wahr, im Allgemeinen falsch.
- d) falsch: α' wird kleiner (bei konstantem p und k/n, ansonsten ist keine Aussage möglich)
- e) wahr
- f) falsch siehe z. B. den Vergleich auf S. 190
- g) wahr

194/17

a) bessere Formulierung: "Anzahl der defekten Nägel unter den 200 geprüften"

b)
$$H_1$$
: $p > 0.02$
 $\overline{A} = \{k+1; ...; 200\}$
 $P(X \ge k+1) \le 0.01$
 $1 - P(X \le k) \le 0.01$

k = 9

Ablehnungsbereich von H_0 : $\overline{A} = \{10; ...; 200\}$

- c) D. h., aufgrund des Testergebnisses entscheidet man sich irrtümlich dafür, dass die Ausschussquote nicht höher als 2% ist.
- d) Die Wahrscheinlichkeit für den Fehler 2. Art wird größer.

a) rot und gelb b) gelb c) gelb und grün d) grün

<u>194/19</u>

 a_1) ≈ 0.19687 a_2) ≈ 0.69721

b) X: "Anzahl der Schüler von 100 befragten, die das Gemälde nicht positiv beurteilen" H₀: "15% der Schüler beurteilen es nicht positiv."

 $\overline{A} = \{24; ...; 100\}$