III. Bernoulli-Experimente und -Ketten

147/1

- a) ja b) ja c) nein d) nein e) nein f) ja g) nein (näherungsweise ja) h) ja
- 147/2 Keine allgemeine Lösung angebbar; machen Sie mal...

<u>147/3</u>

- a) falsch (i.A. gibt es 6 verschiedene Ergebnisse), bei bestimmten Ergebnisräumen (z. B. {gerade, ungerade}): wahr
- b) wahr (Man nehme z. B. als Treffer des Bernoulli-Experiments: "Bei der Bernoulli-Kette gibt es insgesamt 5 Treffer.")
- c) nur dann wahr, wenn die einzelnen Experimente unabhängig voneinander sind
- d) wahr
- e) falsch (man könnte z. B. als Treffer "rot" verwenden und als Niete "nicht rot")
- f) wahr (sonst wäre ja p in jedem Experiment unterschiedlich! Bernoulli-Ketten beruhen immer auf Ziehen mit Zurücklegen.)
- a) gegebene Trefferanzahl

152/1

- $P(A) \approx 0.06459;$ $P(B) \approx 0.00145;$ P(C) = P(B) $P(D) \approx 0.99794;$ P(E) = P(B); $P(F) \approx 0.00143$
- 152/2

$$P(A) \approx 0.11719$$
; $P(B) \approx 0.01116$; $P(C) \approx 0.98926$; $P(D) \approx 0.02381$

152/3

- a) A: "genau 7 Linkshänder"
- b) B: "genau 14 Rechtshänder"
- c) C: "höchstens 2 Rechtshänder"
- d) D: "5 Linkshänder nacheinander"
- e) E: "abwechselnd Links- und Rechtshänder"
- f) F: "mindestens 2 Rechtshänder"
- g) G: "die ersten 10 sind Rechtshänder, danach kommen noch genau 30 Rechtshänder"
- h) H: "nur Rechtshänder"
- i) I: "7 Linkshänder, danach nur noch Rechtshänder"
- j) J: ?; hier ist die Angabe wohl falsch... laut Musterlösung: "sowohl in der ersten als auch in der zweiten Hälfte der Befragten gibt es jeweils zwei Linkshänder"; dafür müsste in der Angabe aber der vordere Term zum Quadrat stehen statt hoch zwei!
- <u>152/4</u> 10 grüne Kugeln

$$p \approx 0.01961$$

153/1

a) Jede Reihe entspricht einem unabhängigen Bernoulli-Experiment mit p = 0,5. Wo die Kugel landet, hängt nur davon ab, wie oft sie nach links bzw. nach rechts abgelenkt wurde, also nur von der Trefferanzahl.

b)
$$\frac{1}{16}$$
; $\frac{4}{16}$; $\frac{6}{16}$; $\frac{4}{16}$; $\frac{1}{16}$

b) $\frac{1}{16}$; $\frac{4}{16}$; $\frac{6}{16}$; $\frac{4}{16}$; $\frac{1}{16}$ c) P(A) ≈ 0.10489 ; P(B) ≈ 0.97899 ; P(C) ≈ 0.12590

 $P(D) \approx 0,00001;$ $P(E) \approx 0,00546;$ $P(F) \approx 0,00023$ d) $\frac{16}{625};$ $\frac{96}{625};$ $\frac{216}{625};$ $\frac{216}{625};$ $\frac{81}{625}$

d)
$$\frac{16}{625}$$
; $\frac{96}{625}$; $\frac{216}{625}$; $\frac{216}{625}$; $\frac{81}{625}$

153/2 Lisa hat recht. ≈ 0.0007425 ; ≈ 0.00397 ; ≈ 0.0003612

153/3

 a_1) ≈ 0.1509 a_2) ≈ 0.9281 a_3) ≈ 0.0080

 b_1) ≈ 0.5435 b_2) ≈ 0.9912

a) ≈ 0.09185 b) ≈ 0.02740 c) ≈ 0.00043 d) ≈ 0.00005 e) ≈ 0.00007 153/4

a) $p = \frac{1}{2}$ b) $P(E) = \frac{8}{27} \approx 0.29670$; $P(F) = \frac{16}{27} \approx 0.59259$ 153<u>/5</u>

a) ≈ 0.39551 b) ≈ 0.01563 c) ≈ 0.89648 d) ≈ 0.10547 e) ≈ 0.23730 154/6

 $P(A) \approx 0.00124$; $P(B) \approx 0.00003$; $P(C) \approx 0.10303$ 154/7

b) Die Hälfte der Flächen muss rot sein. 154/8

a) ≈ 0.34315 b) ≈ 0.54904 c) ≈ 0.73855 154/9

 $P(E) \approx 0.22703$; $P(F) \approx 0.00004$; $P(G) \approx 0.98041$ 154/10

 $P(E) \approx 0.51292$; $P(F) \approx 0.01563$; $P(H) \approx 0.02127$ 154/11

 ≈ 0.1962 = Wahrscheinlichkeit, in die zweite Runde zu kommen (13. Klasse 224 (Ak)) 177/5

a) ≈ 0.00766 177/6

177/8 b) gelb

177/12

Lenis Behauptung ist wahr: Vertauscht man die Treffer- mit der Nietenanzahl und gleichzeitig die Treffer- mit der Nietenwahrscheinlichkeit, so erhält man dieselbe Wahrscheinlichkeit. Formelmäßig:

$$B(n; 1-p; n-k) = \binom{n}{n-k} \cdot (1-p)^{n-k} \cdot p^{n-(n-k)} = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k} = B(n; p; k)$$

 $P(E) \approx 0.0023$; $P(F) \approx 0.0135$ <u>177/13</u>

178/6 a) rot

 $P(A) \approx 0.11148$; $P(C) \approx 0.00836$; $P(D) \approx 0.03097$ <u>179/9</u>

 $P(A) \approx 0.0373$; $P(B) \approx 0.9879$; $P(C) \approx 0.0003$ 179/10

 $p > \approx 0.99250$ 180/17 180/18 a) ≈ 0.28518 bzw. ≈ 0.19012

b) Trefferanzahl in gegebenem Bereich

176/1

- a) "genau 3 Treffer bei Kettenlänge 5 und Trefferwahrscheinlichkeit 0,4"; 0,2304
- b) "höchstens 2 Treffer bei Kettenlänge 5 und Trefferwahrscheinlichkeit 0,7"; ≈ 0,16308
- c) "mindestens 9 Treffer bei Kettenlänge 10 und Trefferwahrscheinlichkeit 0,45"; ≈ 0,00450
- d) "mehr als 2, aber höchstens 7 Treffer bei Kettenlänge 15 und Trefferwahrscheinlichkeit 0,3"; ≈ 0.82316
- e) "höchstens 5 Treffer bei Kettenlänge 10 und Trefferwahrscheinlichkeit 0,2"; ≈ 0,99363
- f) "höchstens 1 Treffer bei Kettenlänge 10 und Trefferwahrscheinlichkeit 0,2"
- g) "höchstens 2 oder mindestens 5 Treffer bei Kettenlänge 10 und Trefferwahrscheinlichkeit 0,2"; ≈ 0,96721
- 176/3 a) ≈ 0.98240 b) ≈ 0.53979 c) ≈ 0.02844 d) ≈ 0.96480 (13. Klasse 233/28)
- 176/4 a) ≈ 0.98750 b) ≈ 0.54912 (13. Klasse 234/31)
- 177/6 c) ≈ 0.24566 (13. Klasse 228/4 (Ak))
- 177/7 a) $\approx 0,00032$ b) $\approx 0,00606$ c) $\approx 0,00233$ (13. Klasse 233/29)
- <u>177/8</u> a) gelb

177/11

- c, d, g enthalten keine Fehler
- a) k > n ist nicht möglich; evtl. ist $F_{0.3}^{22}(20)$ gemeint
- b) k muss eine natürliche Zahl sein
- e) Summe fehlt, richtig ist $1 \sum_{i=0}^{7} B(10; 0,2; i)$
- f) hinten muss 4 stehen statt 3
- h) hier wird die Wahrscheinlichkeit des Gegenereignisses benötigt, also $1 F_{0.65}^{100}(9)$
- 178/6 b) grün c) gelb
- 179/9 P(B) ≈ 0.73610
- 180/18 b) 4 Drucker (vgl. 13. Klasse 233/23)

Blatt:

- 122) a) 0,03676 b) 0,09588 c) < 0,000005 d) 0,68256 e) 0,95995 f) 0,32986 g) 0,28927
- h) 0,93583 i) 0,88108 l) 0,86966 m) 0,96550
- 123) a) 0.06786 b) 0.84811 c) 0.21975 d) 0.95662 e) $2.5 \cdot 10^{-23} \approx 0.00000$
- 125) a) 0,11241 b) 0,78578 c) 0,10181 d) 0,90874
- 126) a) 0.04186 b) 0.94054 c) 0.10132 d) 0.44386 e) ≈ 1.00000
- 128) a) 0,47934 b) 0,52066 c) 0,90810
- 130) a) 0,3125 b) 0,8125 c) 0,5 d) 0,03125
- 131) a) 0,01958 b) 0,08047 c) 0,91953 d) 0,52520