III.1 Steigung eines Funktionsgraphen und Änderungsraten

121/1 (T) bzw. 117/1 (NT)

zeichnerisch: jeweils G_f zeichnen, Sekanten einzeichnen, deren Steigungen mit Steigungsdreiecken ermitteln; rechnerisch: übliche Formel für Steigung verwenden

a) 12 bzw. 6

b) -62 bzw. -42

c) 2 bzw. 2

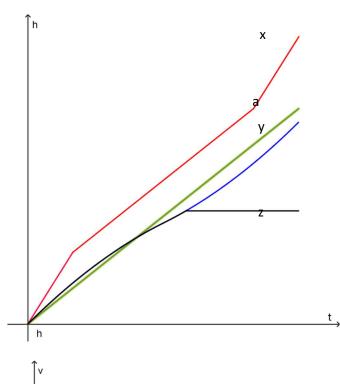
121/2 (T) bzw. 117/2 (NT)

a) 2020 bis 2030

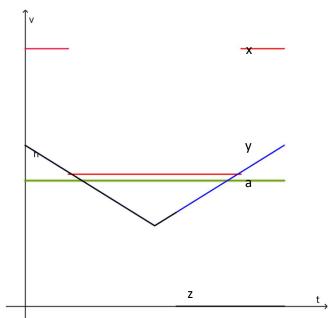
b) D: 0,54% pro Jahr; E: 0,5% pro Jahr; F: 0,3% pro Jahr; P: 0,24% pro Jahr

121/3 (T) bzw. 117/3 (NT)

a)



b)



c) Die Graphen aus (b) geben die Änderungsraten zu den Graphen aus (a) an.

121/4 (T) bzw. 117/4 (NT)

Differenzenquotient = Sekantensteigung = mittlere Steigung in einem Intervall

Differenzialquotient = Grenzwert der Sekantensteigung = Tangentensteigung = momentane / lokale Steigung an einer Stelle / zu einem Zeitpunkt; die Differenzen in Zähler und Nenner werden "unendlich klein"

Beispiel: $f(x) = x^2$

$$\frac{f(2)-f(1)}{2-1} = 3 = \frac{\Delta f}{\Delta x}$$
 ist ein Differenzenquotient,

 $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = 2 = \frac{df}{dx}\Big|_{x = 1}$ ist ein Differenzialquotient

121/5 (T) bzw. 117/5 (NT)

a) 2

b) -2

c) 6

d) -1

121/6 (T) bzw. 117/6 (NT)

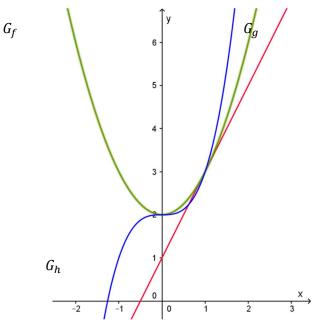
a) -1 bzw. 0

III.2 Ableitungsfunktionen und Ableitungsregeln

b)
$$0.5x_0$$
 bzw. $2x_0 + 4$

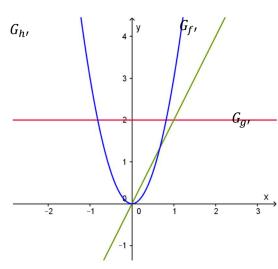
 $\frac{122/8}{2}$ (T) bzw. $\frac{118/8}{2}$ (NT)

a)



- b) keine allgemeine Lösung angebbar machen Sie selbst mal! (bei g(x) ergibt es allerdings keinen Sinn, Tangenten einzuzeichnen...)
- c) f'(x) = 2x; g'(x) = 2; $h'(x) = 3x^2$

d)

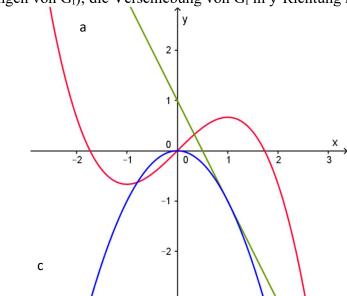


122/9 (T) bzw. 118/9 (NT) eigentlich eher Stoff Klasse 12

- a) Graph 2 (Gf hat die konstante Steigung 2, also muss der Wert der Ableitung konstant gleich 2 sein.)
- b) Graph 3 (G_f hat erst negative Steigung (bis x = 0), dann positive Steigung, also muss die Ableitung erst negativ sein (bis x = 0), dann positiv. Alternativ rechnerisch: $f(x) = 0.5x^2 - 2 = f'(x) = x$)
- c) Graph 1 (G_f hat überall positive Steigung, außer bei x = 0 (dort ist G_f waagrecht), also muss die Ableitung überall positiv sein, außer bei x = 0 (dort ist die Ableitung gleich 0).)

122/10 (T) bzw. 118/10 (NT) eigentlich eher Stoff Klasse 12

Die Art der Ableitungsfunktion (konstant bzw. quadratisch bzw. linear) und Parameter können entnommen werden (alternativ: man kann an verschiedenen Stellen Funktionswerte der Ableitungsfunktion entnehmen und hat dann dort Steigungen von G_f); die Verschiebung von G_f in y-Richtung kann man selbst festlegen.



$$\lim_{x \to x_0} \frac{131/1}{4x^3 - 4x_0^3} = \lim_{x \to x_0} (4x^3 - 4x_0^3) : (x - x_0) = \lim_{x \to x_0} (4x^2 + 4xx_0 + 4x_0^2) = 12x_0^2$$

bzw.

$$\lim_{h \to 0} \frac{4(x_0 + h)^3 - 4x_0^3}{h} = \lim_{h \to 0} \frac{4(x_0^3 + 3x_0^2 h + 3x_0 h^2 + h^3) - 4x_0^3}{h}$$

$$= \lim_{h \to 0} \frac{12x_0^2 h + 12x_0 h^2 + 4h^3}{h} = \lim_{h \to 0} (12x_0^2 + 12x_0 h + 4h^2) = 12x_0^2$$

127/1 (T) bzw. 123/1 (NT)

a)
$$f'(x) = 4x$$
; $m = 2$

b)
$$f'(x) = 6x^3$$
; $m = 384$

c)
$$f'(x) = 1.5x^2$$
; $m = 3.375$

d)
$$f'(x) = 1.5x^2$$
; $m = 0.375$

e)
$$f'(x) = 1.5x^2$$
; $m = 6$

f)
$$f'(x) = 12.5x^4$$
; $m = 12.5$

g)
$$f'(x) = 2.5x^4$$
; $m = 0.004$

h)
$$f'(x) = 9x^2 + 6x$$
; $m = 3$

i)
$$f'(x) = 5$$
; $m = 5$

i)
$$f'(x) = 0$$
; $m = 0$

127/2 (T) bzw. 123/2 (NT)

a)
$$f^{(5)}(x) = 300$$

c)
$$f^{(7)}(x) = -560$$

b)
$$f^{(10)}(x) = 1451520$$

d)
$$f^{(2)}(x) = 2a$$

127/3 (T) bzw. 123/3 (NT)

- a) wahr; Beispiel: $f(x) = x^4 = f'''(x) = 24x$
- b) falsch; Gegenbeispiel: f(x) = m x = f'(x) = m
- c) falsch; Gegenbeispiel: $f(x) = x^2 = f'(x) = 2x$
- d) wahr; Beispiel: $f(x) = x^3 3x$ (zwei ExP) ==> $f'(x) = 3x^2 3$ (zwei Achsenschnittpunkte)
- e) wahr; Beispiel: $f(x) = x^3 = 5 f'(x) = 3x^2$ (waagrechte Tangente bei $x_1 = 0$) = 5 f''(x) = 6x
- (Nullstelle $x_1 = 0$)
- f) wahr; Beispiel: $f(x) = x^n ==> f^{(n)}(x) = n!$

127/4 (T) bzw. 123/4 (NT)

Die Steigung der Tangente an den Graph von f an der Stelle $x_0 = 3$ beträgt 4.

127/5 (T) bzw. 123/5 (NT) eigentlich eher Stoff Klasse 12 f2, g3, h1

$$127/6$$
 (T) bzw. $123/6$ (NT)

$$f(x) = c = f'(x) = \lim_{h \to 0} \frac{c - c}{h} = 0$$

<u>131/2</u> (T) bzw. <u>127/2</u> (NT)

a)
$$f'''(x) = 3$$

b)
$$f'''(x) = -30x^2$$

f) $f'''(x) = -630x^4$

c)
$$f'''(x) = 18$$

c)
$$f'''(x) = 18$$
 d) $f'''(x) = 6 + 120x^2$

e)
$$f'''(x) = 3$$

f)
$$f'''(x) = -630x^4$$

g)
$$f'''(x) = -12x^{-6}$$
 h) $f'''(x) = 0$

h)
$$f'''(x) = 0$$

131/4 (T) bzw. 127/4 (NT)

Wegen der Potenzregel nimmt bei jedem Summanden, also auch beim führenden, der Exponent jeweils um 1 ab ==> Der Grad nimmt um 1 ab.

132/8 (T) bzw. 128/8 (NT) Stoff 12. Klasse...keine allgemeine Lösung angebbar - machen Sie selbst mal!

Übungsblatt (altes Buch aus Bildungsverlag EINS, 229/1):

a)
$$f'(x) = 6x + 2$$
; $f''(x) = 6$

b)
$$f'(x) = 4x^3 - 6x^2 + 6x + 5$$
; $f''(x) = 12x^2 - 12x + 6$

c) f'(x) =
$$\frac{1}{6}(6x^2 + 2x - 4)$$
; f''(x) = $\frac{1}{6}(12x + 2)$

d)
$$f'(x) = 4x^5 - 3x^3 + x$$
; $f''(x) = 20x^4 - 9x^2 + 1$

e)
$$f'(x) = 4x - 2$$
; $f''(x) = 4$

f)
$$f'(x) = 12x - 1$$
; $f''(x) = 12$

g) f'(x) =
$$9x^2 + 2(a+1)x - 3a^2$$
; f''(x) = $18x + 2(a+1)$
i) f'(x) = $6x^5 + 12a^3x^2 - 2a$; f'''(x) = $30x^4 + 24a^3x$

h)
$$f'(x) = 2.5x^4 + (a-2)x$$
; $f''(x) = 10x^3 + a - 2$

f'(x) =
$$6x^5 + 12a^3x^2 - 2a$$
; f''(x) = $30x^4 + 24a^3x$

k)
$$f'(x) = 8ax^3 - 2x$$
; $f''(x) = 24ax^2 - 2$

Buch Klasse 12:

a)
$$f'(x) = 4x - 5$$
; $f''(x) = 4$; $f'''(x) = 0$

b)
$$f'(x) = 25x^4 - 8x^3 + 12x^2 + 40x + 30$$
; $f''(x) = 100x^3 - 24x^2 + 24x + 40$;

 $f'''(x) = 300x^2 - 48x + 24$

c)
$$f'(x) = -9x^2 + \frac{1}{2}x - \frac{7}{4}$$
; $f''(x) = -18x + \frac{1}{2}$; $f'''(x) = -18$

d)
$$f'(x) = -x^2 + \frac{4}{5}x + \frac{5}{11}$$
; $f''(x) = -2x + \frac{4}{5}$; $f'''(x) = -2$

e)
$$f'(x) = -x^3 - 2x^2 + \frac{4}{9}x - 7$$
; $f''(x) = -3x^2 - 4x + \frac{4}{9}$; $f'''(x) = -6x - 4$

f) (T)
$$f'(x) = 16ax^3 - 9x^2 + 5ax - a$$
; $f''(x) = 48ax^2 - 18x + 5a$; $f'''(x) = 96ax - 18$
(NT) $f'(x) = 2x^3 - 9x^2 + 5x + 10$; $f''(x) = 6x^2 - 18x + 5$; $f'''(x) = 12x - 18$

(NT)
$$f'(x) = 2x^3 - 9x^2 + 5x + 10$$
; $f''(x) = 6x^2 - 18x + 5$; $f'''(x) = 12x - 18$

g) (T)
$$f'(x) = \frac{5}{2}ax^4 - ax^2 + 5x$$
; $f''(x) = 10ax^3 - 2ax + 5$; $f'''(x) = 30ax^2 - 2a$

(NT)
$$f'(x) = 3x^5 - 40x^3 - 18x + 6$$
; $f''(x) = 15x^4 - 120x^2 - 18$; $f'''(x) = 60x^3 - 240x$

82/2 (T) bzw. 78/2 (NT) (zweiter Teil) a)
$$g'(x) = 3 - 10x$$

a)
$$g'(x) = 3 - 10x$$

III.3 Einfache Anwendungen

130/1 (T) bzw. 126/1 (NT)

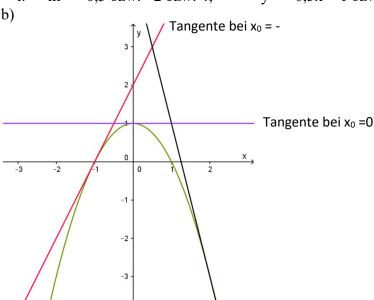
a) f:
$$m = 2$$
 bzw. 0 bzw. -4 ; $y = 2x + 2$ bzw. $y = 1$ bzw. $y = -4x + 5$

g:
$$m = -3$$
 bzw. -1 bzw. 3; $y = -3x - 4$ bzw. $y = -x - 3$ bzw. $y = 3x - 7$

h:
$$m = 4$$
 bzw. -3 bzw. 1; $y = 4x + 6$ bzw. $y = -3x + 2$ bzw. $y = x - 6$

i:
$$m = -0.5$$
 bzw. -2 bzw. 4; $y = -0.5x + 1$ bzw. $y = -2x$ bzw. $y = 4x - 8$

b)



130/2 (T) bzw. 126/2 (NT)

 G_f

a)
$$x_1 = -0.5$$
; $x_2 = -0.25$; $x_3 = 0$; $x_4 = 0.5$; $x_5 = 1$

b)
$$r_4 = -4$$
: $r_2 = -3.5$: $r_3 = -3$: $r_4 = -2$: $r_5 = -1$

c)
$$x_{1,2} = \pm \frac{\sqrt{6}}{3}$$
; $x_{3,4} = \pm \frac{\sqrt{3}}{3}$; $x_5 = 0$; -; -

a)
$$x_1 = -0.5$$
; $x_2 = -0.25$; $x_3 = 0$; $x_4 = 0.5$; $x_5 = 1$
b) $x_1 = -4$; $x_2 = -3.5$; $x_3 = -3$; $x_4 = -2$; $x_5 = -1$
c) $x_{1,2} = \pm \frac{\sqrt{6}}{3}$; $x_{3,4} = \pm \frac{\sqrt{3}}{3}$; $x_5 = 0$; -; -
d) $x_{1,2} = \pm \frac{\sqrt{6}}{3}$; $x_2 = \pm 1$; $x_3 = \pm \frac{2\sqrt{3}}{3}$; $x_4 = \pm \sqrt{2}$; $x_5 = \pm \frac{2\sqrt{6}}{3}$

e)
$$x_{1,2} = \frac{1 \pm \sqrt{13}}{6}$$
; $x_{3,4} = \frac{1 \pm \sqrt{7}}{6}$; $x_3 = 0$, $x_4 = \frac{1}{3}$; -; -

130/3 (T)

- a) 10 m/s^2
- b) 100 m/s
- c) 20 m/s

126/3 (NT)

- a) 6; 3; 3,75; 15; 34,6875
- b) ??? Ich bin Physiker, kein Ökonom!

126/4 (NT)

- a) Die Grenzkosten sind für alle Produktionsmengen gleich, nämlich 5.
- b) keine

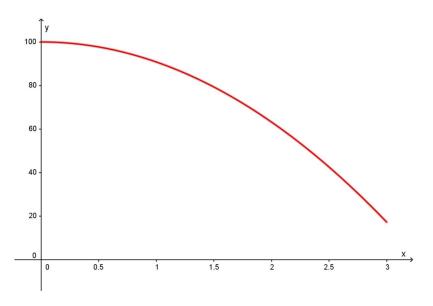
126/5 (NT)

a) 10,25 bzw. 0

b) ??? Ich bin Physiker, kein Ökonom!

131/3 (T) bzw. 127/3 (NT)

- t_1 : W; t₂: V; t₃: P; t₄: R; t₅: T; t₈: U t₆: S; t₇: Q;
- 131/5 (T) bzw. 127/5 (NT) Zeitvariable wird hier mit x bezeichnet!?! a)



- b) 100 m
- c) (-)99,36 km/h, d. h. im Schnitt war das Fahrzeug unter der Höchstgeschwindigkeit
- d) (-)66,24 km/h bzw. (-)132,48 km/h

e)
$$v(x_0) = \lim_{h \to 0} \frac{(-9,2(x_0+h)^2+100)-(-9,2x_0^2+100)}{h} = \lim_{h \to 0} \frac{-18,4x_0h-9,2h^2}{h} = -18,4x_0$$

- f) unklar, was hier gemeint ist... soll man vielleicht eine Gerade mit Steigung (-)100 km/h einzeichnen und dann schauen, ob der Graph von f steiler verläuft?
- g) 0 km/h (d. h. also, das Fahrzeug beschleunigt aus dem Stand in 3 Sekunden (!) von 0 auf knapp 200 km/h, und das auch noch auf die Radarfalle zu (!!!) ... wer denkt sich solche bescheuerten Aufgaben aus?!)

131/6 (T) bzw. 127/6 (NT)

- a) 25 m; 40 m; 25 m
- b) 20 m/s; 10 m/s; -20 m/s
- c) ± 15 m/s; 1,5 s und 4,5 s
- d) 6 s; -30 m/s
- e) 0 m/s; 45 m

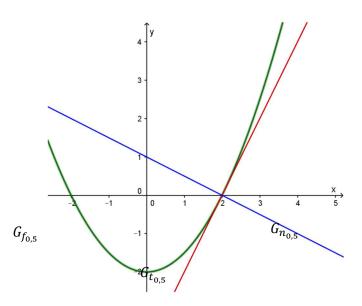
132/7 (T) bzw. 128/7 (NT)

- a) 12,2%; (-)2,925%; 6,875%; (-)17,8%; 1,2%
- b) 10,8%; (-)4,2%; 10,8%; (-)16,2%
- c) $x_2 = 8$
- d) $x_1 = 2$; $x_2 = 5$; $x_3 = 10$; Höhen: 244 m; 156,25 m; 500 m

132/10 (T) bzw. 128/10 (NT)

- a) (−)10 ℓ pro 100 km
- b) (-) 6, $\overline{6}$ ℓ pro 100 km
- c) Der Benzinverbrauch war zwischen 50 km und 150 km deutlich höher als vorher. Herr Söst ist auf dieser Strecke anscheinend deutlich schneller gefahren, und/oder die Strecke war bergiger.

$$\frac{166/8}{c}$$
 (nur T) a) $t_a(x) = 4ax - 8a$ b) $n_a(x) = -\frac{1}{4a}x + \frac{1}{2a}$



altes Buch (Bildungsverlag EINS):

 $\underline{241/1}$

a)
$$v(t) = 2 \frac{m}{s}$$
; $a(t) = 0$

$$\overline{\mathbf{a})\ \mathbf{v}(\mathbf{t})} = 2\,\frac{m}{s}\,;\ \mathbf{a}(\mathbf{t}) = 0 \qquad \qquad \mathbf{b})\ \mathbf{v}(\mathbf{t}) = 10\,\frac{m}{s^2}\,\cdot\mathbf{t} + 10\,\frac{m}{s}\,;\ \mathbf{a}(\mathbf{t}) = 10\,\frac{m}{s^2} \qquad \qquad \mathbf{c})\ \mathbf{v}(\mathbf{t}) = \mathbf{v}_0 - 9\,\frac{m}{s^2}\,\cdot\mathbf{t};\ \mathbf{a}(\mathbf{t}) = -9\,\frac{m}{s^2}$$

c)
$$v(t) = v_0 - 9 \frac{m}{s^2} \cdot t$$
; $a(t) = -9 \frac{m}{s^2}$

243/11

a) Q in C t in s

b)
$$J(t) = 0.3t^2$$

c) $_{\text{J in A}}$ t in s

altes NT-Buch Klasse 12 (winklers-Verlag):

III.4 Weitere Ableitungsregeln

Buch Klasse 12!

a) Ableitung von Verkettungen

82/3 (T) bzw. 78/3 (NT) c)
$$\frac{1}{2} \left(\frac{1}{4} x - \frac{2}{3} \right)$$

93/3 (T) bzw. 89/3 (NT)

Überprüfen: Klammern ausmultiplizieren, dann mit Summen- und Faktorregel ableiten

a)
$$f'(x) = 8x - 20$$

b) $f'(x) = 32x - 48$

d)
$$f'(x) = 2(1+2x)^2$$

b)
$$f'(x) = 32x - 48$$

e)
$$f'(x) = 3(x+2)^3$$

c)
$$f'(x) = -0.5x - 1$$

f)
$$f'(x) = 3(x-2)^2$$

keine allgemeine Lösung angebbar; machen Sie mal!

$$a) k'(x) = 2 \cos(2x)$$

b)
$$l'(x) = -3 \sin(3x)$$

a)
$$k'(x) = 2 \cos(2x)$$
 b) $l'(x) = -3 \sin(3x)$ c) $q'(x) = 2x \cdot \cos(x^2 - 3)$

Denis und Ferhat liegen beide richtig

Übungsblatt (Lambacher-Schweizer Analysis 2 S. 195f):

11) a)
$$4 + 8x$$
 b) $-3(x - 3)^2$ c) $2(x + x^2)(1 + 2x)$ d) $12x^2(1 + x^3)^3$ e) $4(x^3 - 2x)^3(3x^2 - 2)$

f)
$$3(5x + x^2)^2(5 + 2x)$$
 g) $2(t^3 - 4t^2)(3t^2 - 8t)$ h) $-12t^2(a^3 - t^3)^3$ i) $3(2 - 3x + x^2)^2(-3 + 2x)$

$$j) \left(1-x+0.5x^3\right) \left(3x^2-2\right) \quad k) \ 4 \left(-0.5a^2+a \sqrt{2} \ \right)^3 \left(-a+\sqrt{2} \ \right) \quad l) \ 3 \left(x \sqrt{2}-x^2\right)^2 \left(\sqrt{2} \ -2x\right)$$

b) Ableitung von Produkten

23/3

a) wahr (Bei einer einfachen Nullstelle von f schneidet der Graph von f die x-Achse "steil", also mit einer Steigung ungleich 0, also ist f'dort ungleich 0. Alternativ mit Produktregel nachrechnen:

$$f(x) = (x - x_0) \cdot g(x)$$
 mit $g(x_0) \neq 0 ==> f'(x) = g(x) + (x - x_0) \cdot g'(x) ==> f'(x_0) \neq 0$

b) wahr (Bei einer doppelten Nullstelle von f berührt der Graph von f die x-Achse, hat dort also einen ExP, also muss f' dort eine Nullstelle mit VZW haben. Diese könnte natürlich auch 3fach, 5fach, ... sein; dass sie wirklich einfach ist, kann man mit der Produktregel nachrechnen:

$$f(x) = (x - x_0)^2 \cdot g(x) \text{ mit } g(x_0) \neq 0$$

$$==> f'(x) = 2(x - x_0) \cdot g(x) + (x - x_0)^2 \cdot g'(x) = (x - x_0) \cdot (2 g(x) + (x - x_0) \cdot g'(x)),$$

also
$$f'(x) = (x - x_0) \cdot h(x)$$
 mit $h(x) = 2 g(x) + (x - x_0) \cdot g'(x)$, also $h(x_0) = 2 g(x_0) \neq 0$

c) falsch (Gegenbeispiel: $f(x) = x^2 + 1 \Longrightarrow f'(x) = 2x$ hat die einfache Nullstelle $x_1 = 0$, aber f hat offensichtlich *nicht* die doppelte Nullstelle $x_{1,2} = 0$.)

82/2 (T) bzw. 78/2 (NT) (zweiter Teil) c)
$$g'(x) = 1 - x^{-2}$$
 d) $g'(x) = \frac{1}{(3x+1)^2}$

c)
$$g'(x) = 1 - x^{-2}$$

d)
$$g'(x) = \frac{1}{(3x+1)^2}$$

$$\frac{1}{d} f'(x) = 2 (3x + 5) \cdot 3 \cdot (6 - 2x)^2 + (3x + 5)^2 \cdot 2 (6 - 2x) \cdot (-2)$$

$$= 6 (3x + 5)(6 - 2x)^{2} - 4 (3x + 5)^{2} (6 - 2x)$$

$$= 2(3x+5)(6-2x)[3(6-2x)-2(3x+5)]$$

$$= 2 (3x + 5)(6 - 2x) [8 - 12x] = 16 (3x + 5)(3 - x) (2 - 3x)$$

86/4 (T) bzw. 82/4 (NT)

c) Produkt;
$$x_1 = 0$$

$$f'(x) = 1 \cdot (2x^2 + 3) + x \cdot 4x = 6x^2 + 3;$$
 -

$$f''(x) = 12x; \quad x_1 = 0$$

$$\overline{a}) f'(x) = 5x^{4} + 15x^{2} - 2x$$

a)
$$f'(x) = 5x^4 + 15x^2 - 2x$$
 b) $f'(x) = 6x^5 - 5x^4 + 4x^3 - 3x^2 - 2x - 1$

Übungsblatt (Lambacher-Schweizer Analysis 2):

189/4 a)
$$f'(x) = ... = 15x^4 - 4x^3 - 6x + 1$$
 b) $f(x) = 3x^5 - 3x^2 - x^4 + x \implies f'(x) = 15x^4 - 4x^3 - 6x + 1$

$$189/5$$
 a) $-12x + 1$ b) $5x^4 - 12x^2 + 2x$ c) $-1,2x^2 + 1,6x + 2$ d) $-12t^3 - 3t^2 + 6t + 1$ e) $-4x^3 + 2x$ f) $4r^3 + 4r$

189/14 a) f'(x) =
$$u'(x)v(x)w(x) + u(x)v'(x)w(x) + u(x)v(x)w'(x)$$

b)
$$\frac{u'vw + uv'w + uvw'}{uvw} = \frac{u'vw}{uvw} + \frac{uv'w}{uvw} + \frac{uvw'}{uvw} = \frac{u'}{u} + \frac{v'}{v} + \frac{w'}{w}$$

$$\label{eq:further} \text{für } f(x) = u_1(x) \cdot u_2(x) \cdot \ldots \cdot u_n(x) \text{:} \qquad \frac{f \, '}{f} = \frac{u'_1}{u_1} + \frac{u'_2}{u_2} + \ldots + \frac{u'_n}{u_n}$$

$$\begin{array}{ll}
195/16 & \text{a) } (3x+4) (18x+2) & \text{b) } (5-4x)^2 (16x-17) & \text{c) } (1,5x+6) (5-0,4x) (-2,4x+10,2) \\
\text{d) } (x-x^2)^2 (1+3x) (-24x^2+9x+3) & \text{c) } (1,5x+6) (5-0,4x) (-2,4x+10,2)
\end{array}$$

III.5 Differenzierbarkeit

121/7 (T) bzw. 117/7 (NT)

f ist bei x = 1 nicht differenzierbar, weil die Steigung "von links" gleich 2 ist, "von rechts" aber gleich 1, es gibt also keine eindeutige (Tangenten-)Steigung. Anschaulich: Dort ist ein Knick im Graph.