Die goldene Regel der Mechanik und die mechanische Arbeit

Bei allen Kraftwandlern gilt: Für die halbe Kraft braucht man den doppelten Weg, für ein Drittel der Kraft den dreifachen Weg, ... Kraft und Weg sind also <u>indirekt</u> proportional zueinander: $F \sim 1/\Delta x$

Goldene Regel der Mechanik: Bei allen Kraftwandlern bleibt das Produkt aus der Kraft F_x in Wegrichtung (!) und zurückgelegtem Weg Δx jeweils gleich groß: $F_x \cdot \Delta x$ ist konstant.

Beachte: gilt nur, wenn Reibungskräfte (u. a., z. B. Masse von Seil und Rollen) vernachlässigt werden können!

Definition: Die (mechanische) <u>Arbeit</u> W ist das Produkt aus dem Betrag einer <u>konstanten</u> Kraft und der Länge des Weges Δx , in dessen Richtung die Kraft F_x wirkt:

$$W = F_x \Delta x \qquad (work)$$

$$[W] = 1 \text{ Nm} = 1 \text{ J(oule)} = 1 \text{ kg m}^2/\text{s}^2$$

(nach James Prescott Joule, England, 1818-1889)

Mit dem Begriff der Arbeit können wir die goldene Regel also umformulieren zu: Verwendet man einen Kraftwandler, so muss man dennoch (mindestens) dieselbe Arbeit verrichten wie ohne einen; Kraftwandler sparen keine Arbeit!

Einfache Formen:

- Hubarbeit:
- Beschleunigungsarbeit:

(allgemeiner: Um von der Geschwindigkeit v_1 weiter zu beschleunigen auf die Geschwindigkeit v_2 , braucht man die Arbeit

• Spannarbeit: Bevor man anfängt, die Feder zu spannen, ist $F_{Sp} = 0$; wenn die Feder vollständig gespannt ist, ist $F_{Sp} = Ds$; im Mittel braucht man also die Kraft $\frac{1}{2}Ds$.

$$\rightarrow W_{sp} = F_{sp} \cdot s = \frac{1}{2}Ds \cdot s = \frac{1}{2}Ds^2$$

(allgemeiner: Um eine Feder, die schon um s_1 gedehnt ist, weiter zu dehnen auf s_2 , braucht man die Arbeit $W_{sp}=\frac{1}{2}Ds_2^2-\frac{1}{2}Ds_1^2=\frac{1}{2}D\Delta(s^2)$)

• Reibungsarbeit: $W_R = F_R \cdot s = \mu F_G \cdot s = \mu \cdot m \cdot g \cdot s$ mit der "Reibungszahl" μ